This notebook shows some images (synthetic and real topography) using different color palettes, just to reinforce the point that others have made (see references below): that we need to choose a "good" colormap (i.e. a perceptually uniform colormap) if we want to communicate truthfully the results and not artificially emphasize certain features.
To run the code below, in addition to the usual libraries (numpy, matplotlib) you also need xarray and colorcet to have a few more "good" colormaps to choose from.
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
from matplotlib.colors import ListedColormap
from matplotlib.colors import LinearSegmentedColormap
import colorcet as cc
import xarray as xr
import requests
import io
%matplotlib inline
import matplotlib as mpl
mpl.rcParams['figure.dpi'] = 100
The following cell load a few more maps from a compressed numpy file and register them in Matplotlib so they become available for use, and can be selected by simply specifying their names, e.g. landmark
, the same way you would specify one of the Matplotlib colormaps.
remote_file = 'https://github.com/aadm/geophysical_notes/raw/master/aadm_colormaps.npz'
response = requests.get(remote_file)
cmaps = np.load(io.BytesIO(response.content))
cmaps_names = [
'matteo_cube',
'matteo_cubeYF',
'matteo_linear',
'matteo_sawtooth',
'yrwbc',
'sharp',
'seis',
'petrel',
'rainbowcet',
'landmark']
for jj in cmaps_names:
tmp = ListedColormap(cmaps[jj], name=jj)
tmp_r = ListedColormap(np.flipud(cmaps[jj]), name=jj+'_r')
mpl.colormaps.register(name=jj, cmap=tmp)
mpl.colormaps.register(name=jj+'_r', cmap=tmp_r)
#cm.register_cmap(name=jj, cmap=tmp)
#cm.register_cmap(name=jj+'_r', cmap=tmp_r)
The idea is to compare a few of the classic (and awful) colormaps historically present in Matplotlib (e.g., jet
and rainbow
), some of the new, perceptually uniform maps (e.g., viridis
, cividis
, magma
) plus the custom ones loaded above.
More specifically I have added the following maps:
matteo_cube
, matteo_cubeYF
, matteo_linear
, matteo_sawtooth
: see hereseis
, yrwbc
, sharp
, petrel
: these are divergent colormaps, the first is the standard red to blue colormap historically used for seismic data (similar to seismic
, RdBu
, bwr
in Matplotlib); yrwbc
is a variation of the first where extreme negatives and positives are highlighted in yellow and cyan (once again, an historically accepted colormap used to analyze subtle amplitude variations), while the last two replicate the default colormaps used for seismic data in two commercial packages I have used in the past.landmark
: this is the ugliest colormap of all times, but it is a default for displaying horizons in Landmark's Decision Space so I had to put it in just as an example of how bad this is, how much artifacts it creates etcrainbowcet
is a copy of Colorcet/Kovesi rainbow map (see also here)The cell block below defines a few functions (copied and modified from matplotlib docs, stackoverflow, Matteo Niccoli's blog):
def plot_cmaps(cmaps):
'''
plot colormaps
source:
https://matplotlib.org/stable/gallery/color/colormap_reference.html
'''
tmp = np.linspace(0, 1, 256)
gradient = np.vstack((tmp, tmp))
nmaps = len(cmaps)
figh = 0.5 + 0.15 + (nmaps + (nmaps-1)*0.1)*0.3
f, axs = plt.subplots(nrows=nmaps, figsize=(6.4, figh))
f.subplots_adjust(top=1-.15/figh, bottom=.15/figh, left=0.2, right=0.99)
for ax, name in zip(axs, cmaps):
ax.imshow(gradient, aspect='auto', cmap=name)
ax.text(-2, .5, name, va='center', ha='right')
ax.set_axis_off()
def rgb2lab(inputColor):
'''
Adapted from
https://stackoverflow.com/questions/13405956/convert-an-image-rgb-lab-with-python
'''
num = 0
RGB = [0, 0, 0]
for value in inputColor :
if value > 0.04045 :
value = ( ( value + 0.055 ) / 1.055 ) ** 2.4 # 2.4 is gamma correction
else :
value = value / 12.92
RGB[num] = value * 100
num = num + 1
XYZ = [0, 0, 0,]
X = RGB [0] * 0.4124 + RGB [1] * 0.3576 + RGB [2] * 0.1805
Y = RGB [0] * 0.2126 + RGB [1] * 0.7152 + RGB [2] * 0.0722
Z = RGB [0] * 0.0193 + RGB [1] * 0.1192 + RGB [2] * 0.9505
XYZ[ 0 ] = round( X, 4 )
XYZ[ 1 ] = round( Y, 4 )
XYZ[ 2 ] = round( Z, 4 )
XYZ[ 0 ] = float( XYZ[ 0 ] ) / 95.047 # ref_X = 95.047 Observer= 2°, Illuminant= D65
XYZ[ 1 ] = float( XYZ[ 1 ] ) / 100.0 # ref_Y = 100.000
XYZ[ 2 ] = float( XYZ[ 2 ] ) / 108.883 # ref_Z = 108.883
num = 0
for num, value in enumerate(XYZ):
if value > 0.008856 :
value = value ** (1/3)
else :
value = ( 7.787 * value ) + ( 16 / 116 )
XYZ[num] = value
Lab = [0, 0, 0]
L = ( 116 * XYZ[ 1 ] ) - 16
a = 500 * ( XYZ[ 0 ] - XYZ[ 1 ] )
b = 200 * ( XYZ[ 1 ] - XYZ[ 2 ] )
Lab [ 0 ] = round( L, 4 )
Lab [ 1 ] = round( a, 4 )
Lab [ 2 ] = round( b, 4 )
return Lab
def plot_cmap_lightness(cmaps, divergent=False):
'''
Plot lightness of given colormaps.
Adapted by aadm from original code on matplotlib docs,
replacing colorspacious with two alternatives to calculate *L (lightness):
Source:
1) https://matplotlib.org/stable/tutorials/colors/colormaps.html
'''
x = np.linspace(0.0, 1.0, 256)
nmaps = len(cmaps)
f, ax = plt.subplots(figsize=(1.5*nmaps, 3),
constrained_layout=True)
locs = [] # locations for text labels
for j, cmap in enumerate(cmaps):
# Get RGB values for colormap and convert the colormap in
# CAM02-UCS colorspace. lab[0, :, 0] is the lightness.
# rgb = cm.get_cmap(cmap)(x)[np.newaxis, :, :3]
rgb = mpl.colormaps[cmap](x)[np.newaxis, :, :3] # shape (1, 256, 3)
lab = np.zeros(rgb.shape)
for i in range(rgb.shape[1]):
lab[0, i, :] = rgb2lab(rgb[0, i, :])
y_ = lab[0, :, 0]
c_ = x
dc = 2 # cmaps horizontal spacing
ax.scatter(x+j*dc, y_, c=c_, cmap=cmap, s=300, linewidths=0.0)
# Store locations for colormap labels
if divergent:
locs.append(x[int(x.size/2.)] + j*dc)
else:
locs.append(x[-1] + j*dc)
ax.set_ylim(0.0, 100.0)
# Set up labels for colormaps
ax.xaxis.set_ticks_position('top')
ticker = mpl.ticker.FixedLocator(locs)
ax.xaxis.set_major_locator(ticker)
formatter = mpl.ticker.FixedFormatter(cmaps[0:nmaps])
ax.xaxis.set_major_formatter(formatter)
ax.xaxis.set_tick_params(rotation=50)
ax.set_ylabel('Lightness $L^*$', fontsize=12)
def add_landmarks(ax, coords, names):
arrs = dict(arrowstyle='->', color='w',
connectionstyle='arc3,rad=.3')
boxs = dict(boxstyle="round", fc="white", ec="none")
for i, nn in enumerate(names):
xl, yl = coords[i,1], coords[i,0]
xt, yt = xl-xl*.05, yl-yl*.005
ax.plot(xl, yl, 'ow', mfc='none')
ax.annotate(nn, xy=(xl, yl), xytext=(xt, yt),
arrowprops=arrs, bbox=boxs, color='k')
def rainbow_fill_between(ax, x, y, y2=0, cmap='cividis'):
from matplotlib.colors import Normalize
normlz = Normalize(vmin=y.min(), vmax=y.max())
cmap0 = plt.get_cmap(cmap)
for i in range(x.size - 1):
xx = [x[i], x[i+1]]
yy = [y[i], y[i+1]]
colr = cmap0(normlz(y[i]))
ax.fill_between(xx, yy, y2=y2, color=colr)
def make_cmap_model(model=0, nbins=100):
'''
make two synthetic models to show the effect
on colormaps:
1) mountain and valley
2) fold
'''
# set x, y limits
x = np.linspace(-3, 3, nbins)
y = np.linspace(-3, 3, nbins)
X0, Y0 = np.meshgrid(x, y)
# make model 0
Za = np.exp(-(X0+1.5)**2 - (Y0+.5)**2)
Zb = np.exp(-(X0-.5)**2 - (Y0-.5)**2)
Z0 = (0.9*Za - 0.6*Zb) * 2
# make model 1
Z1 = np.sin(X0 + Y0/4)
# make xarrays and return them
model0 = xr.DataArray(Z0, coords=[("y", y), ("x", x)])
model1 = xr.DataArray(Z1, coords=[("y", y), ("x", x)])
return model0, model1
def plot_cmap_model(model, y=None, baseline=0, cmap='cividis',
color='black', title=None):
# line properties of selected profile along the horizontal (y=nnn)
opt = dict(color=color, lw=4, alpha=0.5)
# do the plot
f, ax = plt.subplots(nrows=2, figsize=(8, 6),
constrained_layout=True,
sharex=True)
model.plot(ax=ax[0], center=False, cmap=cmap)
if y is not None:
# extracts z profile at selected y
line = model.sel(y=y, method='nearest')
lx, ly = line.x.data, line.data
ax[0].axhline(y=y, ls='--', **opt)
line.plot(ax=ax[1], **opt)
rainbow_fill_between(ax[1], lx, ly, baseline, cmap=cmap)
ax[1].set_ylim(baseline, ly.max())
ax[1].set_title(None)
if title is None:
f.suptitle('Colormap: '+cmap, fontsize='x-large')
return ax
def plot_cmap_topo(topo, y=None, baseline=0, cmap='cividis',
color='black', title=None):
# line properties of selected profile along the horizontal (y=nnn)
opt = dict(color=color, lw=4, alpha=0.5)
# do the plot
f, ax = plt.subplots(nrows=2, figsize=(8, 6),
constrained_layout=True,
sharex=True)
topo.z.plot(ax=ax[0], center=False, cmap=cmap)
if y is not None:
# extracts z profile at selected y
line = topo.sel(y=y, method='nearest')
lx, ly = line.x.data, line.z.data
ax[0].axhline(y=y, ls='--', **opt)
line.z.plot(ax=ax[1], **opt)
rainbow_fill_between(ax[1], lx, ly, baseline, cmap=cmap)
ax[1].set_ylim(baseline, ly.max())
ax[1].set_title(None)
if title is None:
f.suptitle('Colormap: '+cmap, fontsize='x-large')
return ax
def plot_cmap_model_3d(model, cmap='cividis', title=None):
X0, Y0 = np.meshgrid(model.x, model.y)
f, ax = plt.subplots(ncols=2, figsize=(10,5),
subplot_kw={"projection": "3d"},
constrained_layout=True)
for aa in ax:
aa.plot_surface(X0, Y0, model.data,
cmap=cmap, linewidth=0)
ax[0].view_init(15, -37)
ax[1].view_init(80, -90)
seqnt = ['matteo_cube', 'matteo_cubeYF', 'matteo_linear', 'cividis', 'cubehelix', 'cet_CET_L16']
plot_cmaps(seqnt)
plot_cmap_lightness(seqnt)
I have collected here the "white sto blacks" and not the opposite because when used for seismic data the convention is to have the black mapped to the positive amplitudes (resembling the old convention of wiggle displays where the peak is filled in black and the trough is white).
monos = ['gray_r', 'Greys', 'cet_gray_r', 'gist_gray_r']
plot_cmaps(monos)
plot_cmap_lightness(monos)
topog = ['terrain', 'gist_earth']
plot_cmaps(topog)
plot_cmap_lightness(topog)
The first list (seism0
) collects colormaps available in Matplotlib; the second list (seism1
) shows the new colormaps that I have introduced and defined earlier:
seism0 = ['RdBu', 'RdGy', 'bwr_r', 'coolwarm_r', 'seismic_r']
seism1 = ['seis', 'yrwbc', 'sharp', 'petrel']
plot_cmaps(seism0)
plot_cmap_lightness(seism0, divergent=True)
plot_cmaps(seism1)
plot_cmap_lightness(seism1, divergent=True)
Gotta be careful with those. I have come to the conclusion that for the time being, I will use rainbowcet
(which is the same as Colorcet's rainbow
, aka cc.rainbow_bgyr_35_85_c73
or 'cet_rainbow_bgyr_35_85_c73'
).
rainbs = ['rainbow', 'jet', 'turbo', 'landmark', 'matteo_sawtooth', 'rainbowcet', 'cet_CET_R1', 'cet_CET_R3']
plot_cmaps(rainbs)
plot_cmap_lightness(rainbs, divergent=True)
The problem with displaying colormaps in this way is that you don't get a feel for how they would really work, their subtleties etc. Showing the effects of these colormaps on simple 2D models brings the message home more effectively.
First I define two simple models:
A
: mountain and valleyB
: the foldA, B = make_cmap_model()
Then I plot each of the model with a different colormap (top subplot), and extract a profile along the vertical axis filling it with the color based on the chosen colormap (bottom subplot).
Credit for the idea goes to Matteo Niccoli, see here for details.
cmap_list = ['RdBu', 'landmark', 'terrain', 'jet', 'rainbowcet', 'cividis']
for cmap in cmap_list:
plot_cmap_model(A, -.25, -2, cmap=cmap)
cmap_list = ['RdBu', 'landmark', 'terrain', 'jet', 'rainbowcet', 'cividis']
for cmap in cmap_list:
plot_cmap_model(B, 0, -2, cmap=cmap)
Let's have a look at how these maps behave on real data. This is the topography from the North-West corner of Italy. As before, the top plot shows the terrain and the dashed line marks the selected profile that is reproduced in the bottom plot. This profile passes right across the Mont Blanc massif and goes down to the flatlands -- a true rollercoaster!
I bet most people would prefer terrain
or gist_earth
, and to be fair, they do look good. But just think at the artifacts that are introduced and leave terrain
to Google Earth, please.
remote_file = 'https://github.com/aadm/geophysical_notes/raw/master/ETOPO1_it-nw.nc'
response = requests.get(remote_file)
itno = xr.open_dataset(io.BytesIO(response.content))
landmarks = np.array([
[45.46504890183975, 9.186162057345419], # milano
[45.83912925921118, 6.864979544529871]]) # mont blanc
landmarks_name = ['Milano', 'Monte Bianco']
cmap_topo_list = ['terrain', 'gist_earth', 'landmark', 'jet', 'rainbowcet', 'cividis', 'cubehelix']
for cmap in cmap_topo_list:
ax = plot_cmap_topo(itno, 45.839, 0, cmap=cmap)
add_landmarks(ax[0], landmarks, landmarks_name)