
The SONAR-netCDF4 convention for
sonar data, version 2.0

List of authors

Version 2.0

Table of Contents
Colophon. 1

Foreword . 2

1. Introduction. 3

1.1. Background . 3

1.2. Versioning. 4

2. Use of the SONAR-netCDF4 convention in echo-integration processing. 6

2.1. Typical processing steps and the associated data models. 7

2.1.1. Noise removal . 7

2.1.2. Seabed detection . 7

2.1.3. Labeling. 7

2.1.4. Machine learning . 7

2.1.5. Integrated backscatter . 7

3. The SONAR-netCDF4 convention . 8

3.1. Introduction . 8

3.2. Hierarchical structure . 8

3.3. Obligations and missing data. 9

3.4. Metadata and authorities . 9

3.5. Units . 9

3.5.1. Time units . 10

3.6. Datatypes . 10

3.7. Vocabularies. 10

3.8. File-naming convention . 10

3.9. Groups . 11

3.9.1. Annotation group . 13

3.9.2. Environment group . 13

3.9.3. Platform group . 15

3.9.4. Provenance group. 25

3.9.5. Sonar group . 26

Beam group . 26

3.9.6. Proposed Single Target additions . 40

3.9.7. Proposed ADCP additions . 43

3.9.8. Gridded group . 52

3.9.9. Interpretation . 62

3.9.10. Vendor specific group . 62

4. Conversion equations . 63

4.1. Type 1 . 63

4.2. Type 2 . 63

4.3. Type 3 . 64

4.4. Type 4 . 65

4.5. Type 5 . 67

4.6. Type 6 . 67

5. Coordinate systems . 69

5.1. Coordinate System Transforms. 70

5.2. Split-aperture coordinates . 71

5.3. Equations for positioning echoes in a Surface coordinate system . 72

5.3.1. Beams are stabilized by the sonar and beam pointing angles are relative to SCS 72

5.3.2. Beams are not stabilized by the sonar and beam pointing angles are relative to TCS. . . . 73

5.4. Equations for positioning echoes in a Geographical Coordinate System 74

6. Split-aperture beams . 76

6.1. Angles stored in file . 76

6.2. Angles not stored in file . 76

6.2.1. Four quadrants (type A) . 77

6.2.2. Three or four sub-beams (type B and C) . 77

7. Revision history . 78

7.1. Significant changes from version 1 to version 2. 78

7.2. Changes within a document version . 79

8. Acknowledgements . 80

9. References . 81

Annex 1: Working with netCDF4 files . 83

Colophon
International Council for the Exploration of the Sea
Conseil International pour l’Exploration de la Mer

H. C. Andersens Boulevard 44-46
DK-1553 Copenhagen V
Denmark
Telephone (+45) 33 38 67 00
Telefax (+45) 33 93 42 15
www.ices.dk
info@ices.dk

ICES boilerplate stuff goes here.

1

http://www.ices.dk
mailto:info@ices.dk

Foreword
This report documents a convention for the storage of sonar data in netCDF4-formatted computer
files. The intention is to provide a well-founded convention that is supported by multiple sonar
systems and multiple sonar analysis software packages, with the aim of facilitating the use of sonar
data for research and survey purposes. The name of this convention is SONAR-netCDF4.

This document was originally developed by the Topic Group on Defining a data format for
omnidirectional fisheries sonar, part of ICES Working Group on Fisheries Acoustics, Science, and
Technology (WGFAST). The current version was developed by the Open Data subgroup of WGFAST.

2

Chapter 1. Introduction
Sonars have long been used to study and understand fisheries and the aquatic environment, but
only recently have they directly provided digital data for quantitative analysis. Each manufacturer
typically provides such data in a proprietary, but usually open, file format specific to their sonar
systems. This hinders the effective use and exchange of such data by requiring the development
and maintenance of file-reading software for multiple analysis programs and multiple sonars.

This document presents a convention for the storage and exchange of fisheries sonar data, with an
initial focus on omnisonars. It is sufficiently generic and flexible to contain all foreseeable types of
fisheries sonar data, along with necessary metadata. It also serves as a statement of the minimum
set of data and metadata required to use omnisonar data in a quantitative manner.

The term sonar is used in this convention to mean all underwater acoustic systems that actively
transmit sound and then listen for echoes from that transmission.

1.1. Background
Many purpose-built file formats exist to store and exchange data from scientific and industrial
equipment. Formats have been created by sonar and echosounder manufacturers; in addition,
more generic acoustic data formats such as the Generic Water Column (GWC) format (Gee et al.,
2012), the eXtended Triton Format (XTF; Triton (2013)), and the HydroACoustics (HAC) format
(McQuinn et al., 2005) have also been created. These formats store a time-ordered sequence of
datagrams, making it easy to append new data. Other data, such as geographical position, are
typically interleaved into the sequence of datagrams. However, this is not optimal for analysis
purposes when data are viewed and analysed as a set of pings and metadata from a time-period or
spatial grouping. In addition, efficient random-read access to individual pings is not possible unless
an index is available or created.

The work presented here does not create yet another sonar-specific file format; the knowledge
required is not within the expertise of this group. However, the group does have the expertise to
specify what data must be stored to allow for unambiguous use of backscatter data during
quantitative analysis.

Accordingly, an existing file-format definition has been utilized and what should be stored is
specified. The requirements for such a file format definition were:

• ability to adequately represent the content and structure of sonar data and associated
metadata;

• standardized, open-file format;

• fast random access to data stored in the file;

• ability to store multiple types of data (e.g. position and backscatter);

• ability to store metadata (e.g. sonar settings);

• freely available and open libraries to read the data files into programming languages and
technical computing environments (e.g. Java, C, C++, Python, Matlab, and R);

• reliable and space-efficient format for data exchange and storage;

3

• self-describing file format;

• backwards compatibility upon modification of the file contents specification (i.e. old
software/tools can still read relevant parts of a newer version);

• computer platform-independent;

• long-term support and extensive use in other scientific fields;

• support for very large datasets.

Other scientific communities that collect and produce voluminous amounts of data have addressed
similar needs, resulting in the Hierarchical Data Format (The HDF Group, 2017), currently at
version 5 (HDF5). This is the only file format that meets all the listed requirements and is utilized
here for sonar data. There are two realizations of the HDF5 file format: (i) HDF5 itself and (ii)
netCDF4 (Unidata, 2017), which is a subset of HDF5. Both are sufficient, but netCDF4 is more widely
used and has slightly wider language support and implementation diversity. Accordingly, netCDF4
has been chosen.

Using a well-supported file format has the significant benefit that many data exploration, query,
extraction, and analysis tools already read such files. This eliminates the need to develop and
maintain sonar-specific file-reading software and facilitates the use of existing tools for data
management, distribution, and analysis.

An attractive feature of netCDF4 is the ease and transparency with which data can be added to an
existing netCDF4 file. For example, processed data and how it was obtained can be included in the
same file as the raw data. In addition, netCDF4 files can be very large while still providing fast
access to data subsets. This allows a single SONAR-netCDF4 file to contain data from a transect or an
entire survey. These features would simplify data management, improve traceability and long-term
storage of analysis, enhance the sharing of processed datasets, and facilitate analysis of large
disparate datasets. In general, any amount of additional data can be stored in the files without
affecting the ability to use the data specified by the SONAR-netCDF4 convention.

A distinction is commonly made between file formats designed for archiving data in the original
form, formats designed for storing partially or fully processed data, and formats for data exchange
(Jackson et al., 2014). The SONAR-netCDF4 convention is intended to be suitable for all of these.

Version 1 of this convention specified how to store backscatter amplitude data from omnisonars.
Version 2 now provides for the storage of data from other acoustic equipment, including
echosounders, multi-beam sonars, and Acoustic Doppler Current Profilers (ADCP). It also has
proposed implementations for the storage of derived data, such as bottom and school detections,
categorization of backscatter, and integrated backscatter at multiple resolutions.

1.2. Versioning
This document and the convention that it describes will change over time to implement
enhancements and to correct errors and omissions. To accommodate this, the SONAR-netCDF4
convention always requires a version number. This document has a separate version number,
allowing for revised versions of the document to describe the same version of the convention.

The convention version number will always be included in the title of the document. The document

4

version number will always be found in Chapter 7.

5

Chapter 2. Use of the SONAR-netCDF4
convention in echo-integration processing
There are several processing steps that are common among the echo-integration postprocessing
programs, and there is a need to ease the use of such programs interchangeably. This section
describes a few standard processing steps and outlines how the convention is intended to be used
to facilitate this. Note that the steps may be different between programs, and the convention only
recommends how to store the data for the steps that are most common. We do not address how and
in which order to process the data.

Exchange of information between different parts in the processing chain is increasingly important.
This is particularly relevant for deep learning and machine learning frameworks, which have
hardware requirements that are often different to the computers that are used for traditional
desktop applications. Processing tools that run on autonomous platforms are also a need, which
often require a different suite of software solutions, typically tailored to low power situations.

Typical steps in the postprocessing chain of sonar data include noise removal, seabed detection,
target classification, and echo-integration (Figure 1). Here we outline the different groups in the
convention that can support the input and output from these steps. If a processing software step
can read the data, process the information and write back to the data using the convention, other
software can pick it up and process it further.

Echo data
BeamGroup

Detect
bottom

Bottom data
BeamGroup

Modify
echo data

Scrutinise

Integrate

Integral data
GridGroup

Echo data
BeamGroup
GridGroup

Scrutiny data
BeamGroup
GridGroup

The SONAR-netCDF4
convention

Figure 1. Typical steps in an echo-integration processing chain for water column data. The two main groups
may be used for several steps depending on the objective, and the GridGroup may be seen as a projection of
the BeamGroup and the conversion to GridGroup is typically lossy. The output from the sonars are typically the
BeamGroup and the report format are typically the GridGroup.

6

2.1. Typical processing steps and the associated data
models
Two main data models are available in the convention: Beam_group and Gridded. The Beam_group
allows for different sample rates, different ping rates, etc, for each channel. It is a flexible model
and able to cope with all sonar systems. The Gridded is a storage structure for multi-channel data
that has been re-gridded or has homogeneous ping times and range bins across all channels (i.e.,
frequencies).

Depending on the type of processing, both Beam_group and Gridded could be used as input and
output.

2.1.1. Noise removal

to come

2.1.2. Seabed detection

Range to the seabed is needed when echo-integrating biological backscatter close to the seabed.
Different algorithms have been developed and the recommendation is to store the range to the
seabed in the Beam_group.

2.1.3. Labeling

Labeling acoustic data, i.e. scrutinizing and allocating the acoustic energy to categories, is
traditionally achieved by manually assigning backscatter. A data structure to contain such labels is
detailed in Section 3.9.9.

An earlier overview of how different echo-integration software stores this information can be
found here: Label overview

2.1.4. Machine learning

Convolutional neural networks and other machine learning methods are suitable for processing
sonar data, but it is typically more convenient to map the data to a common range, time and
frequency grid before passing it to a deep learning framework. The use of Gridded on a high
resolution grid should be used for this purpose.

2.1.5. Integrated backscatter

The output from the echo-integration process is typically further processed to yield distribution and
abundance estimates of selected species. It is recommended to use the Gridded for this purpose,
where the data is gridded typically on a coarser grid that that used for the machine learning
objective.

7

https://docs.google.com/document/d/1F5ub9-ElnGWgoFzOhwrNiAB6fZRhKI8Nw6FskMhzI0g/edit#heading=h.ihw2gdxqw9td

Chapter 3. The SONAR-netCDF4 convention

3.1. Introduction
NetCDF4 is a data model, application programming interface (API) library, and file format for
storing and managing data, developed and maintained by Unidata. Unidata is part of the US
University Corporation for Atmospheric Research (UCAR) Community Programs (UCP) and funded
primarily by the US National Science Foundation.

SONAR-netCDF4 is a data and metadata convention for the storage of data from active sonars in
netCDF4 formatted files. SONAR-netCDF4 consists primarily of a naming convention and a data
structure within the netCDF4 data model.

Datasets can be added to SONAR-netCDF4 files if they do not conflict with the SONAR-netCDF4
datasets. If such additions are potentially of use to other users of the file format, it is recommended
that they be proposed for inclusion in this or additional convention specifications.

Each SONAR-netCDF4 file is intended to store data from one sonar mounted on one platform. The
storage of data from multiple sonars and multiple platforms in one SONAR-netCDF4 file is not in the
scope of the convention.

A design principle of SONAR-netCDF4 has been to focus on describing the acoustic backscatter data,
not the overall purpose and context of why the data were collected. Such broader metadata are
better stored in separate metadata systems and schema (e.g. ISO (2014); ICES (2016)).

3.2. Hierarchical structure
NetCDF4 has two main organizational concepts: (i) the variable, which can contain a variety of data
structures, and (ii) groups, being a collection of variables. Groups and variables can have attributes
attached to them. Groups can be arranged into a hierarchy. SONAR-netCDF4 divides sonar data into
a set of hiearchical netCDF4 groups:

1. / – The top-level or root of the hierarchy and contains metadata about the SONAR-netCDF4 file
format;

a. Annotation – contains time-stamped annotations;

b. Environment – contains information relevant to acoustic propagation through water;

c. Platform – contains information about the platform on which the sonar is installed and
information about each sensor, e.g. its relative position to the platform frame of reference.

d. Provenance – contains metadata about how the SONAR-netCDF4 version of the data were
obtained and processed;

e. Sonar – contains the main data models in the convention; groups under Sonar are used for
storing the data output from the sonars, as well as processed sonar data and interpretation
masks;

i. Beam_groupX – contains ping based backscatter; the group supports multiple sensors of
the same type, e.g. multiple frequencies frequencies;

8

http://www2.ucar.edu/
http://www.ucp.ucar.edu/

ii. GriddedX – contains gridded backscatter data; the grid is similar across multiple
frequencies and can be used for fine scale grids as well as coarser resolution typically as
a basis for the reports;

iii. InterpretationX – contains the interpretation regions; the intepretation mask is
independent from the backscatter groups;

f. Vendor specific – contains vendor-specific information about the sonar and the data.

The 'X' suffix on some group names indicates that there can be multiple of these type of groups and
that the true group name will have a trailing number.

These groups contain variables and variable attributes with prescribed names and contents.

3.3. Obligations and missing data
Some variables and attributes in SONAR-netCD4 are mandatory; these form the minimal set of data
required to quantitatively use backscattering amplitude data. The remaining variables and
attributes have various levels of optionality and provide enhanced context and information about
the sonar data. The obligations are:

1. M: mandatory

2. MA: mandatory if applicable or available

3. R: recommended

4. O: optional

Any non-mandatory variables can be absent from a SONAR-netCDF4 file. If a variable is mandatory,
it must be present and must contain data. The set of mandatory variables and attributes has been
chosen so that sonar systems can directly generate SONAR-netCDF4-conforming files without
needing survey, experiment, or cruise-specific data.

The _FillValue attribute should be used to indicate missing data in variables. For floating point
values, the IEEE 754 not-a-number (NaN) is the preferred fill value as this is convenient for
commonly-used analysis packages (e.g. Python, Matlab, R).

3.4. Metadata and authorities
The fisheries acoustics community has developed a metadata convention for processed acoustic
data (ICES, 2016). Where relevant, attribute and variable names have been reused from this
convention. The NetCDF Climate and Forecast (CF) Metadata Conventions (Eaton et al., 2017) have
been used where sensible (the efficient storage of unprocessed active sonar data has not been a
design goal of the CF convention) along with the ESIP Attribute Convention for Data Discovery
(ACDD). Terms and concepts from other metadata conventions have also been used where
appropriate.

3.5. Units
All relevant variables and attributes in SONAR-netCDF4 files are required to have a textual netCDF4

9

attribute with the name “units” that specifies the units. The International System of Units (SI) is
used. For simplicity, the data format mandates the use of particular units and their textual form, as
per the definitions and conventions of the UDUNITS-2 package (UCAR, 2014).

Decibels are commonly used in underwater acoustic quantities, but UDUNITS does not currently
include such a unit. However, as the CF convention does permit decibel (with symbols: “dB”, “db”,
and “dbel”), it is used in the SONAR-netCDF4 convention. Note that reference values commonly
used with decibels should not be part of the units attribute, but rather included in the variable
description (see Nedelec et al. (2021), §11.4 for an explanation of this).

Numeric variables that are dimensionless should have a units attribute of "1".

3.5.1. Time units

Even though NetCDF and the UDUNITS-2 part of the CF conventions allow for the specification any
valid time unit, to prevent any extra complication in software that reads the SONAR-netCDF4 files,
only two time units are supported in this convention.

• nanoseconds since 1601-01-01 00:00:00Z

• nanoseconds since 1970-01-01 00:00:00Z

The choice of nanoseconds is because sonar system timestamp precision can be less than one
millisecond. Other forms of time units, such as 100 nanoseconds, are not well supported by the
various tools that read CF-formatted time units, and nanoseconds units is retained.

The year 1601 is used because it is the epoch year unit used in Simrad .raw files and Windows32/64
systems.

The year 1970 is used because it is the epoch time widely used in Unix and most programming
languages.

3.6. Datatypes
Each item has a suggested datatype, chosen to have sufficient range and precision to contain the
expected data. Alternative datatypes can be used if necessary, but are discouraged. The “string”
type should contain text in the UTF-8 encoding and should be treated as case-sensitive during any
comparisons. Enumerated datatypes are used for some of the controlled vocabularies.

3.7. Vocabularies
The contents of some variables and attributes are restricted to defined vocabularies. These are
listed or referenced where required. Desired additions to the vocabularies should be proposed to
WGFAST for incorporation into this document. Some of the vocabularies have been represented as
netCDF4 enumeration data types and some using the CF flag_values convention.

3.8. File-naming convention
SONAR-netCDF4 files should always end with a “.nc” suffix to indicate that they are a netCDF file. It

10

is recommended that the filename should sort alphanumerically into chronological order (e.g. date
and time of the first ping in the file; thus: YYYYMMDD-HHMMSS.nc). This facilitates file
management and use in analysis systems.

3.9. Groups
The top-level group (labelled "/" in netCDF4 terminology) contains metadata about the SONAR-
netCDF4 file, represented as attributes in the group (Table 1).

11

Table 1. Description of the top-level group.

Description Obligation Comment

Group attributes

 :Conventions = "CF-1.7, SONAR-netCDF4-
1.1, ACDD-1.3"

M A comma-separated list of the conventions followed in the file. Include the SONAR-netCDF4 convention and version (e.g.
”SONAR-netCDF4-1.1”) and the relevant CF and ACDD conventions (e.g. ”CF-1.7” and ”ACDD-1.3”).

 :date_created M Timestamp of file creation in ISO8601:2004 extended format, including the time zone (e.g. 2017-05-06T20:21:35Z).

 :keywords M A comma-separated list of key words and/or phrases. For direct sonar-generated files, this should at least include the type of
sonar.

 :license O Either enter the URL to a standard or specific license, enter “Freely distributed” or “None”, or describe any restrictions to data
access and distribution in free text.

 :rights O Description of the usage rights of data in the file.

 :sonar_convention_authority = "ICES" M Name of the organization managing and distributing the SONAR-netCDF4 convention. Currently ICES.

 :sonar_convention_name = "SONAR-
netCDF4"

M Formal name of this convention (i.e. ”SONAR-netCDF4”).

 :sonar_convention_version = "1.1" M SONAR-netCDF4 version number in the form “major.minor”, where major and minor are non-negative integers.

 :summary M A paragraph describing the dataset, analogous to an abstract for a paper. For direct sonar-generated files, this can be blank.

 :title M A short phrase or sentence describing the dataset. For direct sonar-generated files, this can be as simple as "Files generated by
the XYZ sonar".

12

3.9.1. Annotation group

The annotation group contains timestamped annotations with optional identification code.
Annotations are typically textual notes entered by users relevant to the data at a particular time.
Some sonar systems provide an interface for creating manual and programmatic annotations. The
netCDF4 group name is /Annotation and is described in Table 2.

Table 2. Description of the annotation group.

Description Obligation Comment

Dimensions

 time = unlimited Can be of fixed or unlimited length, as appropriate.

Coordinate variables

 uint64 time(time) MA

 :axis = "T"

 :calendar = "gregorian"

 :long_name = "Timestamps of annotations"

 :standard_name = "time"

 :units = "nanoseconds since 1970-01-01 00:00:00Z" or "nanoseconds since 1601-01-01 00:00:00Z"

Variables

 string
annotation_category(time)

O Optional category for the annotation, for use in grouping annotation types.

 :long_name = "Annotation category"

 string annotation_text(time) MA

 :long_name = "Annotation text"

3.9.2. Environment group

The environment group contains information on environmental conditions, especially the speed of
sound in water and acoustic absorption. The netCDF4 group name is /Environment and is
described in Table 3. Sound speed, absorption, and current profiles can also be stored in this group,
as can profile measurements of salinity, temperature, and pressure. Such profile data should use
the NCEI NetCDF “profile” template, v2.0 or greater.

13

Table 3. Description of the environment group.

Description Obligation Comment

Dimensions

 frequency = unlimited Can be of fixed or unlimited length, as appropriate.

Coordinate variables

 float frequency(frequency) M

 :long_name = "Acoustic frequency"

 :standard_name = "sound_frequency"

 :units = "Hz"

 float :valid_min = 0.0

Variables

 float absorption_indicative(frequency) M Indicative absorption values used to calculate the time-varied-gain (TVG), in the absence of more detailed data.

 :long_name = "Indicative acoustic absorption"

 :units = "dB/m"

 float :valid_min = 0.0

 float sound_speed_indicative M Mean sound speed in water used to calculate echo range, in the absence of more detailed sound-speed data.

 :long_name = "Indicative sound speed"

 :standard_name = "speed_of_sound_in_sea_water"

 :units = "m/s"

 float :valid_min = 0.0

14

3.9.3. Platform group

This group contains information about the sonar platform (e.g. ship). The netCDF4 group name is
/Platform and is described in Table 4. Optionally, subgroups of /Platform can be used to store data
from individual instruments that provide measurements about the platform, such as position,
attitude, etc (note that if the measurements are about the environment around the platform they
should be stored in the /Environment group). This structure must be used to store all instrument
data.

Each platform can contain several instruments of the same type, such as multiple position sensors.
Each instrument type is defined as a subgroup of the /Platform group and data for each instrument
are stored in a subgroup of the instrument group. Subgroup names for common instrument types
are given in Table 5 and how to store data from those instruments are also cross-referenced in
Table 5. For example, data from individual position and attitude instruments are stored as
subgroups of the /Platform/Position and /Platform/Attitude subgroups. The names of those
subgroups must match the names of the instrument’s serial number or identifier as defined in the
MRU_ids and position_ids variables in the /Platform group (Table 4). Additional instrument type
subgroups can be created as required.

Each instrument group can also store unprocessed and unparsed sensor data. The data format for
unprocessed and unparsed data is not prescribed, but could, for example, be NMEA-style text
and/or numeric values. These subgroups must have one attribute called “description” that provides
a short description of the contents. Other attributes can be added as desired. The variables under
the subgroup should have appropriate names and an attribute that gives the units, where
appropriate.

As a general example, parsed data from a GPS with id Garmin1234 would be stored in
/Platform/Position/Garmin1234 and if NMEA data from that GPS were also stored, it would be in
/Platform/Position/Garmin1234/NMEA.

The coordinate system convention used for the /Platform group variables is detailed in Chapter 5.

15

Table 4. Description of the platform group.

Description Obligation Comment

Group attributes

 :platform_code_ICES O Platform code from the ICES SHIPC vocabulary (http://vocab.ices.dk/services/pox/GetCodeList/SHIPC).

 :platform_name O Platform name of which the sonar is a part.

 :platform_type O Platform type that the sonar is part of. Use the description field from the ICES ”Platform Class” vocabulary
(http://vocab.ices.dk/services/pox/GetCodeList/Platform%20Class).

Types

 byte enum transducer_type_t {receive_only = 0, transmit_only =
1, monostatic = 3 }

Transducer function - transmit only, receive only or both (monostatic)

Dimensions

 transducer M Transducer count

 position M position sensor count

 MRU M MRU attitude sensor count

Variables

 float MRU_offset_x(MRU) R x-axis component of the vector from the platform coordinate system origin to the motion reference unit origin.

 :long_name = "Distance along the x-axis from the platform coordinate system origin to the motion reference unit sensor origin"

 :units = "m"

 float MRU_offset_y(MRU) R y-axis component of the vector from the platform coordinate system origin to the motion reference unit origin.

 :long_name = "Distance along the y-axis from the platform coordinate system origin to the motion reference unit sensor origin"

 :units = "m"

 float MRU_offset_z(MRU) R z-axis component of the vector from the platform coordinate system origin to the motion reference unit origin.

 :long_name = "Distance along the z-axis from the platform coordinate system origin to the motion reference unit sensor origin"

 :units = "m"

 float MRU_rotation_x(MRU) R Extrinsic angular rotation about the x-axis from the platform zero angle to the MRU zero angle.

 :long_name = "Extrinsic rotation about the x-axis from the platform to MRU coordinate systems"

 :units = "arc_degree"

 float :valid_range = −180.0, 180.0

16

http://vocab.ices.dk/services/pox/GetCodeList/SHIPC
http://vocab.ices.dk/services/pox/GetCodeList/Platform%20Class

Description Obligation Comment

 float MRU_rotation_y(MRU) R Extrinsic angular rotation about the y-axis from the platform zero angle to the MRU zero angle.

 :long_name = "Extrinsic rotation about the y-axis from the platform to MRU coordinate systems"

 :units = "arc_degree"

 float :valid_range = −180.0, 180.0

 float MRU_rotation_z(MRU) R Extrinsic angular rotation about the z-axis from the platform zero angle to the MRU zero angle.

 :long_name = "Extrinsic rotation about the z-axis from the platform to MRU coordinate systems"

 :units = "arc_degree"

 float :valid_range = −180.0, 180.0

 string MRU_ids(MRU) MA MRU serial number or identification name. Must be a valid netCDF4 group name.

 string position_ids(position) MA Position sensor serial number or identification name. Must be a valid netCDF4 group name.

 float position_offset_x(position) R Distance from the platform coordinate system origin to the latitude/longitude position origin along the x-axis.

 :long_name = "Distance along the x-axis from the platform coordinate system origin to the latitude/longitude sensor origin"

 :units = "m"

 float position_offset_y(position) R Distance from the platform coordinate system origin to the latitude/longitude position origin along the y-axis.

 :long_name = "Distance along the y-axis from the platform coordinate system origin to the latitude/longitude sensor origin"

 :units = "m"

 float position_offset_z(position) R Distance from the platform coordinate system origin to the latitude/longitude position origin along the z-axis.

 :long_name = "Distance along the z-axis from the platform coordinate system origin to the latitude/longitude sensor origin"

 :units = "m"

 float transducer_offset_x(transducer) R Distance from the platform coordinate system origin to the transducer along the x-axis.

 :long_name = "x-axis distance from the platform coordinate system origin to the sonar transducer"

 :units = "m"

 float transducer_offset_y(transducer) R Distance from the platform coordinate system origin to the transducer along the y-axis.

 :long_name = "y-axis distance from the platform coordinate system origin to the sonar transducer"

 :units = "m"

 float transducer_offset_z(transducer) R Distance from the platform coordinate system origin to the transducer along the z-axis.

 :long_name = "z-axis distance from the platform coordinate system origin to the sonar transducer"

17

Description Obligation Comment

 :units = "m"

 string transducer_ids(transducer) MA Transducer serial number or identification name

 float transducer_rotation_x(transducer) R Extrinsic angular rotation about the x-axis from the transducer zero angle to the coordinate system origin zero angle.

 float :valid_range = −180.0, 180.0

 :units = "arc_degree"

 :long_name = "Extrinsic rotation about the x-axis from the transducer to reference coordinate systems"

 float transducer_rotation_y(transducer) R Extrinsic angular rotation about the y-axis from the transducer zero angle to the coordinate system origin zero angle.

 float :valid_range = −180.0, 180.0

 :units = "arc_degree"

 :long_name = "Extrinsic rotation about the y-axis from the transducer to reference coordinate systems"

 float transducer_rotation_z(transducer) R Extrinsic angular rotation about the z-axis from the transducer zero angle to the coordinate system origin zero angle.

 float :valid_range = −180.0, 180.0

 :units = "arc_degree"

 :long_name = "Extrinsic rotation about the z-azis from the transducer to reference coordinate systems"

 transducer_type_t
transducer_function(transducer)

M The transducer function (that is, transmit_only, receive_only, or monostatic)

 :long_name = "Transducer function (transmit_only, receive_only, monostatic)"

 float water_level R Distance from the origin of the platform coordinate system to the nominal water level measured along the z-axis of the
platform coordinate system (positive values are below the origin). The distance between the nominal and actual water level is
provided by vertical_offset.

 :long_name = "Distance from the platform coordinate system origin to the nominal water level along the z-axis"

 :units = "m"

Subgroups

 Positions M Suggested subgroup to store Position sensor data.

 Attitudes M Suggested subgroup to store MRU sensor data.

Table 5. Suggested subgroup names for platform instruments.

18

Sensor or datagram Subgroup name Comment

Attitude sensors, MRU Attitude Use data structure described in Table 6

GPS sensors, Position Position Use data structure described in Table 7

Clock or time synchronisation datagrams Clock

NMEA telegrams NMEA Use data structure described in Table 8.

Table 6. Description of a platform attitude subgroup.

Description Obligation Comment

Group attributes

 string :description O System description

Dimensions

 time can be fixed or unlimited length, as appropriate

Coordinate variables

 uint64 time(time) M Time from attitude sensor

 :axis = "T"

 :calendar = "gregorian"

 :long_name = "Timestamps for attitude data"

 :standard_name = "time"

 :units = "nanoseconds since 1970-01-01 00:00:00Z" or "nanoseconds since 1601-01-01 00:00:00Z"

Variables

 float heading(time) MA Platform heading. Measured clockwise from north.

 :long_name = "Platform heading(true)"

 :standard_name = "platform_orientation"

 :units = "degrees_north"

 float :valid_range = 0.0, 360.0

 float heading_rate(time) MA Platform heading rate.

 :long_name = "Platform heading rate"

 :units = "degree/s"

19

Description Obligation Comment

 float pitch(time) M Platform pitch. Positive values indicate a bow-up pitch.

 :standard_name = "platform_pitch_angle"

 :units = "arc_degree"

 :long_name = "pitch angle"

 float :valid_range = −90.0, 90.0

 float pitch_rate(time) O Platform pitch rate

 :standard_name = "platform_pitch_rate"

 :units = "degree/s"

 :long_name = "pitch rate"

 float roll(time) M Platform roll. Positive values indicate a roll to starboard.

 :standard_name = "platform_roll_angle"

 :units = "arc_degree"

 :long_name = "roll angle"

 float roll_rate(time) O Platform roll rate

 :standard_name = "platform_roll_rate"

 :units = "degree/s"

 :long_name = "roll rate"

 float vertical_offset(time) M Distance from the nominal water level to the actual water level measured along the _z_axis of the platform coordinate system
(positive values are when the actual water level is below the nominal water level). For ships and similar, this is called heave,
but the concept applies equally well to underwater vehicle depth.This offset is applied at the position given by (MRU_offset_x,
MRU_offset_y, MRU_offset_z).

 :units = "m"

 :long_name = "Platform vertical offset from nominal"

Subgroups

 NMEA O Suggested subgroup to store raw NMEA data.

Table 7. Description of a platform position subgroup.

20

Description Obligation Comment

Group attributes

 string :description O System description

Dimensions

 time can be fixed or unlimited length, as appropriate

Coordinate variables

 uint64 time(time) M Time from position sensor

 :axis = "T"

 :calendar = "gregorian"

 :long_name = "Timestamps for position data"

 :standard_name = "time"

 :units = "nanoseconds since 1970-01-01 00:00:00Z" or "nanoseconds since 1601-01-01 00:00:00Z"

 :coordinates = "time latitude longitude"

Variables

 double latitude(time) M Latitude of the platform reference point in WGS-84 reference system

 double :valid_range = −90.0, 90.0

 :standard_name = "Platform latitude"

 :units = "degrees_north"

 :long_name = "latitude"

 :coordinates = "time latitude longitude"

 double longitude(time) M Longitude of the platform reference point in WGS-84 reference system

 double :valid_range = −180.0, 180.0

 :standard_name = "Platform longitude"

 :units = "degrees_east"

 :long_name = "longitude"

 :coordinates = "time latitude longitude"

21

Description Obligation Comment

 float heading(time) MA Heading refers to the direction a platform is pointing. This may or may not be the direction that the platform actually travels,
which is known as its course or track. Any difference between course and heading is due to the motion of the underlying
medium, the air or water, or other effects like skidding or slipping. Heading is typically based on compass directions, so 0° (or
360°) indicates a direction toward true North, 90° indicates a direction toward true East, 180° is true South, and 270° is true
West.

 :standard_name = "platform_orientation"

 :units = "degree"

 :long_name = "Platform heading(true)"

 :coordinates = "time latitude longitude"

 float course_over_ground(time) O a platform course is the cardinal direction along which the platform is to be steered

 :standard_name = "platform_course"

 :units = "m/s"

 :long_name = "degree"

 :coordinates = "time latitude longitude"

 float speed_over_ground(time) MA Speed is the magnitude of velocity. The platform speed with respect to ground is relative to the solid Earth beneath it, i.e. the
sea floor for a ship.

 :standard_name = "platform_speed_wrt_ground"

 :units = "m/s"

 :long_name = "speed_over_ground"

 float :valid_min = 0.0

 :coordinates = "time latitude longitude"

 float speed_relative(time) MA Platform speed relative to water.

 :long_name = "Platform speed relative to water"

 :standard_name = "platform_speed_wrt_seawater"

 :units = "m/s"

 float :valid_min = 0.0

 :coordinates = "time latitude longitude"

 float height_above_reference_ellipsoid(time) MA Height of the platform reference point above the WGS-84 ellipsoid

 :standard_name = "height_above_reference_ellipsoid"

22

Description Obligation Comment

 :units = "m"

 :long_name = "height_above_reference_ellipsoid"

 :coordinates = "time latitude longitude"

 float altitude(time) MA Altitude is the (geometric) height of the platform reference point above the reference WGS-84 geoid. The geoid is similar to
mean sea level.

 :standard_name = "altitude"

 :units = "m"

 :long_name = "altitude"

 :coordinates = "time latitude longitude"

 float distance(time) O Distance travelled by the platform from an arbitrary location.

 :long_name = "Distance travelled by the platform"

 :units = "m"

 float :valid_min = 0.0

 :coordinates = "time latitude longitude"

Subgroups

 NMEA O Suggested subgroup to store raw NMEA data.

Table 8. Suggested group for storing NMEA datagrams from marine instruments.

Description Obligation Comment

Group attributes

 :description = "All NMEA sensor
datagrams"

M Description of the subgroup contents.

Dimensions

 time Can be fixed or unlimited length, as appropriate.

Coordinate variables

 uint64 time(time) M

 :axis = "T"

 :calendar = "gregorian"

23

Description Obligation Comment

 :long_name = "Timestamps for NMEA datagrams"

 :standard_name = "time"

 :units = "nanoseconds since 1970-01-01 00:00:00Z" or "nanoseconds since 1601-01-01 00:00:00Z"

Variables

 string NMEA_datagram(time) O Example of how to store NMEA datagrams.

 :long_name = "NMEA datagram"

24

3.9.4. Provenance group

The provenance group provides information on how the SONAR-netCDF4 version of the data were created and what processes were applied to this
data. The netCDF4 group name is /Provenance and is described in Table 9.

Table 9. Description of the provenance group.

Description Obligation Comment

Group attributes

 :conversion_software_name MA Name of the software used to do the conversion.

 :conversion_software_version MA Version of the software used to do the conversion.

 :conversion_time MA Date and time of the start of the conversion process in ISO8601:2004 extended format, including time zone.

 :history R Provides an audit trail for modifications to the original data. It should contain a separate line for each modification, with each
line beginning with a timestamp and including user name, modification name and modification arguments. for example
2019-09-07T15:50+00Z (John Doe) File conversion by XXX software

Dimensions

 filenames = unlimited MA Can be of fixed or unlimited length, as appropriate.

Variables

 string source_filenames(filenames) MA Vector of datafile names that were used to generate the data in this SONAR-netCDF4 file.

 :long_name = "Source filenames"

25

3.9.5. Sonar group

The netCDF4 group name is /Sonar and contains three subgroups.

Beam group

This group contains ping based sonar backscatter data and associated metadata and is described in
Table 10. The netCDF4 group name is Beam_groupX, where X is an integer.

Data from each beam mode (e.g. horizontal and vertical beam modes) are stored in subgroups
under the /Sonar group (see Table 11). The form of the backscatter data can vary between different
sonar systems. For example, some provide a complex-valued amplitude, while others provide a
real- or integer-valued amplitude.

Subgroups under /Sonar each have a coordinate variable that contains ping timestamps. In some
cases the coordinate variables in different subgroups contain the same data (such as when a sonar
produces several types of beam data from each and every ping). To avoid duplication of timestamp
data, a coordinate variable can be used across multiple subgroups. For organisational reasons, it is
then recommended that such coordinate variables be located in the /Sonar group.

26

Table 10. Description of the sonar group.

Description Obligation Comment

Group attributes

 :sonar_manufacturer R Name of the sonar manufacturer.

 :sonar_model R Name of the sonar model.

 :sonar_serial_number R Sonar serial number.

 :sonar_software_name R Sonar software name.

 :sonar_software_version R Sonar software version.

 :sonar_type = "omni-sonar" M Type of sonar, chosen from a defined vocabulary (currently only one value): ”omnisonar” (a sonar with a nominally
omnidirectional mode).

Types

 byte enum beam_stabilisation_t {not_stabilised = 0,
stabilised = 1}

Whether or not the beam direction is compensated for platform motion.

 byte enum beam_t {single = 0, split_aperture_angles = 1,
split_aperture_4_subbeams = 2, split_aperture_3_subbeams = 3,
split_aperture_3_1_subbeams = 4}

Beam type. Split aperture indicates a beam that can detect the arrival angle of echoes, while single beam cannot.

 byte enum conversion_equation_t {type_1 = 1, type_2 = 2, type_3
= 3, type_4 = 4, type_5 = 5}

The type of equation used to convert backscatter measurements into volume backscattering and target strength.

 byte enum transmit_t {CW = 0, LFM = 1, HFM = 2} Type of transmit pulse. CW = continuous wave – a pulse nominally of one frequency, LFM = linear frequency modulation – a
pulse which varies from transmit_frequency_start to transmit_frequency_stop in a linear manner over the nominal pulse
duration (transmit_duration_nominal), HFM = hyperbolic frequency modulation – a pulse which varies from
transmit_frequency_start to transmit_frequency_stop in a hyperbolic manner over the nominal pulse duration
(transmit_duration_nominal).

Subgroups

 Beam_group1 M Example of a beam group. Include as many subgroups as necessary for different beam groups. Use unique group names,
preferably of the form Beam_groupX where X is an integer.

 Grid_group1 M Example of a grid group. Include as many subgroups as necessary for different grid groups containing different beam groups
resampled on a user defined regular grid. Use unique group names, preferably of the form Grid_groupX where X is an
integer.

Table 11. Description of the beam subgroups of the sonar group.

27

Description Obligation Comment

Group attributes

 :beam_mode M Mode of the beam in this subgroup, taken from the defined vocabulary of: “vertical” (a set of beams that form a vertical slice
through the water), ”horizontal” (a set of beams that form a nominally horizontal plane through the water), and ”inspection”
(a set of beams with arbitrary pointing directions).

 conversion_equation_t
:conversion_equation_type

M Type of equation used to convert backscatter measurements into volume backscattering strength and target strength.

 int :preferred_MRU MA Index of the MRU sensor to use by default. If the sensor used can be dynamically changed, refer to the variable active_MRU.
Index matches the ones used in the Platform MRU sensors variables.

 int :preferred_position MA Index of the position sensor to use by default. If the sensor used can be dynamically changed, refer to the variable
active_position_sensor. Index matches the ones used in the Platform position sensors variables.

Types

 float(*) sample_t Variable length vector used to store ragged arrays of backscatter data. Data type can be varied to suit data storage needs.

 float(*) angle_t Variable length vector used to store ragged arrays of split-aperture angles. Data type can varied to suit data storage needs.

 float(*) pulse_t Variable length vector used to store arrays of modeled transmit pulse samples.

Dimensions

 beam The number of beams in this beam group.

 subbeam The number of sub-beams in these beams.

 ping_time = unlimited Can be of fixed or unlimited length, as appropriate.

 tx_beam The number of transmit beams in this beam group

 frequency The number of frequencies during the calibration exercise of the FM mode.

Coordinate variables

 string beam(beam) M Beam name (or number or identification code).

 :long_name = "Beam name"

 uint64 ping_time(ping_time) M Timestamp at which each ping occurred.

 :axis = "T"

 :calendar = "gregorian"

 :long_name = "Time-stamp of each ping"

 :standard_name = "time"

 :units = "nanoseconds since 1970-01-01 00:00:00Z" or "nanoseconds since 1601-01-01 00:00:00Z"

28

Description Obligation Comment

 :coordinates = "ping_time platform_latitude platform_longitude"

 float frequency(frequency) MA Frequencies for which transducer gain values have been estimated during the calibration exercise.

 :long_name = "Calibration gain frequencies"

 :units = "Hz"

 float :valid_min = 0.0

Variables

 sample_t backscatter_i(ping_time, beam,
subbeam)

MA Imaginary part of backscatter measurements (or for type 5 equations, TS values). Each element in the 3D matrix is a variable
length vector (of type sample_t) that contains the samples for that beam, ping time, and optionally subbeam.

 :long_name = "Raw backscatter measurements (imaginary part)"

 :units = "as appropriate" Use units appropriate for the data.

 int sample_count(ping_time, beam, subbeam) O The number of samples in each subbeam/beam/ping in the backscatter_r and backscatter_i variables. This value is not
essential, but software that reads the backscatter_r and backscatter_i variables can use it to significantly improve data
loading times.

 :long_name = "Number of samples per ping in each beam, and optionally subbeam"

 :units = "1"

 int :valid_min = 0

 sample_t backscatter_r(ping_time, beam,
subbeam)

M Real part or amplitude or power of backscatter measurements. Each element in the 3D matrix is a variable length vector (of
type sample_t) that contains the samples for that beam, ping time, and optionally subbeam.

 :long_name = "Raw backscatter measurements (real part)"

 :units = "as appropriate" Use units appropriate for the data.

 angle_t echoangle_major(ping_time, beam) MA Electrical phase angle of the incoming echoes at time ping_time relative to the direction of each beam. Only required if the
beam_type variable for this ping_time is set to split_aperture_angles.

 :long_name = "Echo arrival angle in the major beam coordinate"

 :units = "arc_degree"

 float :valid_range = −180.0, 180.0

 angle_t echoangle_minor(ping_time, beam) MA Electrical phase angle of the incoming echoes at time ping_time relative to the direction of each beam. Only required if the
beam_type variable for this ping_time is set to split_aperture_angles.

 :long_name = "Echo arrival angle in the minor beam coordinate"

 :units = "arc_degree"

29

Description Obligation Comment

 float :valid_range = −180.0, 180.0

 float echoangle_major_sensitivity(beam) MA Scaling factor to convert electrical arrival angles into physical angles. Only required if beam_type is not set to single.

 :long_name = "Major angle scaling factor"

 :units = "1"

 float :valid_min = 0.0

 float echoangle_minor_sensitivity(beam) MA Scaling factor to convert electrical arrival angles into physical angles. Only required if beam_type is not set to single.

 :long_name = "Minor angle scaling factor"

 :units = "1"

 float :valid_min = 0.0

 float beamwidth_receive_major(ping_time,
beam)

M One-way beam width at half power down in the horizontal direction of the receive beam.

 :long_name = "Half power one-way receive beam width along major (horizontal) axis of beam"

 :units = "arc_degree"

 float :valid_range = 0.0, 360.0

 int :substitute_value_used = 0 If non-zero, indicates that the variable value is a nominal value used when a measured or calibrated value is not available for
a mandatory variable.

 float beamwidth_receive_minor(ping_time,
beam)

M One-way beam width at half power down in the vertical direction of the receive beam.

 :long_name = "Half power one-way receive beam width along minor (vertical) axis of beam"

 :units = "arc_degree"

 float :valid_range = 0.0, 360.0

 int :substitute_value_used = 0 If non-zero, indicates that the variable value is a nominal value used when a measured or calibrated value is not available for
a mandatory variable.

 float beamwidth_transmit_major(ping_time,
tx_beam)

MA One-way beam width at half power down in the horizontal direction of the transmit beam.

 :long_name = "Half power one-way transmit beam width along major (horizontal) axis of beam"

 :units = "arc_degree"

 float :valid_range = 0.0, 360.0

30

Description Obligation Comment

 float beamwidth_transmit_minor(ping_time,
tx_beam)

MA One-way beam width at half power down in the vertical direction of the transmit beam.

 :long_name = "Half power one-way transmit beam width along minor (vertical) axis of beam"

 :units = "arc_degree"

 float :valid_range = 0.0, 360.0

 float rx_beam_rotation_phi(ping_time, beam) M The intrinsic z–y’–x” clockwise rotation about the x-axis of the platform coordinate system needed to give the receive beam
coordinate system. For ships and similar, if installation angles are close to zero, this rotation usually matches the beam
pointing angle in the across track direction.

 :long_name = "receive beam angular rotation about the x axis"

 :units = "arc_degree"

 float :valid_range = −180.0, 180.0

 float rx_beam_rotation_theta(ping_time,
beam)

M The intrinsic z–y’–x” clockwise rotation about the y-axis of the platform coordinate system needed to give the receive beam
coordinate system. For ships and similar, if installation angles are close to zero, this rotation usually matches the beam
pointing angle in the along track direction.

 :long_name = "receive beam angular rotation about the y axis"

 :units = "arc_degree"

 float :valid_range = −90.0, 90.0

 float rx_beam_rotation_psi(ping_time, beam) M The intrinsic z–y’–x” clockwise about the z-axis of the platform coordinate system needed to give the receive beam coordinate
system. For most cases this angle is set to zero.

 :long_name = "receive beam angular rotation about the z axis"

 :units = "arc_degree"

 float :valid_range = −180.0, 180.0

 float tx_beam_rotation_phi(ping_time,
tx_beam)

M The intrinsic z–y’–x” clockwise rotation about the x-axis of the platform coordinate system needed to give the transmit beam
coordinate system. For ships and similar, if installation angles are close to zero, this rotation usually matches the beam
pointing angle in the across track direction.

 :long_name = "transmit beam angular rotation about the x axis"

 :units = "arc_degree"

 float :valid_range = −180.0, 180.0

31

Description Obligation Comment

 float tx_beam_rotation_theta(ping_time,
tx_beam)

M The intrinsic z–y’–x” clockwise about the y-axis of the platform coordinate system needed to give the transmit beam
coordinate system. For ships and similar, if installation angles are close to zero, this rotation usually matches the beam
pointing angle in the along track direction.

 :long_name = "transmit beam angular rotation about the y axis"

 :units = "arc_degree"

 float :valid_range = −90.0, 90.0

 float tx_beam_rotation_psi(ping_time,
tx_beam)

M The intrinsic z–y’–x” clockwise about the z-axis of the platform coordinate system needed to give the transmit beam
coordinate system. For most cases this angle is set to zero.

 :long_name = "transmit beam angular rotation about the z axis"

 :units = "arc_degree"

 float :valid_range = −180.0, 180.0

 beam_stabilisation_t
beam_stabilisation(ping_time)

M Indicates whether or not sonar beams have been compensated for platform motion.

 :long_name = "Beam stabilisation applied (or not)"

 :coordinates = "ping_time platform_latitude platform_longitude"

 beam_t beam_type M Type of split-aperture beam (or not).

 :long_name = "Type of beam"

 float equivalent_beam_angle(ping_time,
beam)

M Equivalent beam angle.

 :long_name = "Equivalent beam angle"

 :units = "sr"

 float :valid_range = 0.0, 12.56637061435917295385 Maximum value is equivalent to 4π.

 int :substitute_value_used = 0 If non-zero, indicates that the variable value is a nominal value used when a measured or calibrated value is not available for
a mandatory variable.

 float gain_correction(ping_time, beam) MA Gain correction. This parameter is set from a calibration exercise. Necessary for type 2 conversion equation.

 :long_name = "Gain correction"

 :units = "dB"

 int :substitute_value_used = 0 If non-zero, indicates that the variable value is a nominal value used when a measured or calibrated value is not available for
a mandatory variable.

32

Description Obligation Comment

 short
non_quantitative_processing(ping_time)

M Settings of any processing that is applied prior to recording backscatter data that may prevent the calculation of calibrated
backscatter. A value of 0 always indicates no such processing.

 :flag_meanings Space-separated list of non-quantitative processing setting words or phrases. The first item must always be the no non-
quantitative processing setting and subsequent items as appropriate to the sonar and data(e.g.
”no_non_quantitative_processing simrad_noise_filter_weak simrad_noise_filter_medium simrad_noise_filter_strong”).

 short :flag_values List of unique values (e.g. 0, 1, 3, 4) that indicate different non-quantitative processing settings that could be present in the
sonar data. Must have the same number of values as settings given in the flag_meanings attribute.

 :long_name = "Presence or not of non-quantitative processing applied to the backscattering data (sonar specific)"

 :coordinates = "ping_time platform_latitude platform_longitude"

 float receiver_sensitivity(ping_time, beam) MA Sensitivity of the sonar receiver for the current ping. Necessary for type 2 conversion equation.

 :long_name = "Receiver sensitivity (re 1/μPa)"

 :units = "dB"

 int :substitute_value_used = 0 If non-zero, indicates that the variable value is a nominal value used when a measured or calibrated value is not available for
a mandatory variable.

 float sample_interval(ping_time) M Time between individual samples along a beam. Common for all beams in a ping.

 :long_name = "Interval between recorded raw data samples"

 :units = "s"

 float :valid_min = 0.0

 :coordinates = "ping_time platform_latitude platform_longitude"

 float sample_time_offset(ping_time, tx_beam) M Time offset applied to sample time-stamps and intended for applying a range correction (e.g. as caused by signal processing
delays). Positive values reduce the calculated range to a sample. The range of a given sample at index sample_index and if a
constant sound speed is applied is given by range=
sound_speed_at_transducer*(blanking_interval+sample_index*sample_interval - sample_time_offset)/2

 :long_name = "Time offset that is subtracted from the timestamp of each sample"

 :units = "s"

 float blanking_interval(ping_time, beam) M Amount of time during reception where samples are discarded. The number of discarded sample is given by
blanking_interval*sample_interval.

 :long_name = "Amount of time during reception where samples are discarded"

 :units = "s"

 :valid_min = "0.0"

33

Description Obligation Comment

 float detected_bottom_range(ping_time,
beam)

O Range from the transducer face where the bottom detection criteria were encountered for the amplitude or the phase of the
backscattered echoes. The range of the bottom at index bottom_index with a monostatic transducer and if a constant sound
speed is applied is given by detected_bottom_range=
sound_speed_at_transducer*(blanking_interval+bottom_index*sample_interval - sample_time_offset)/2.

 :long_name = "Detected range of the bottom"

 :units = "m"

 :valid_min = "0.0"

 float transducer_impedance(ping_time,
subbeam)

MA Impedance of the transducer. This is the impedance of the load over which the transceiver measures voltage on the
transducer subbeam. Necessary for conversion equation type 4.

 :long_name = "Impedance of transducer"

 :units = "ohm"

 float transceiver_impedance(ping_time,
subbeam)

MA Impedance of the transceiver. This is the impedance of the transducer subbeam. Necessary for conversion equation type 4.

 :long_name = "Impedance of transceiver"

 :units = "ohm"

 sample_t time_varied_gain(ping_time) MA Time-varied gain (TVG) used for each ping. Should contain TVG coefficient vectors. Necessary for type 2 conversion equations.

 :long_name = "Time-varied-gain coefficients"

 :units = "dB"

 :coordinates = "ping_time platform_latitude platform_longitude"

 float transducer_gain(ping_time, beam,
frequency)

MA Gain of the transducer beam. This is the parameter that is set from a calibration exercise. Necessary for conversion equation
type 1, 3 and 4.

 :long_name = "Gain of transducer"

 :units = "dB"

 int :substitute_value_used = 0 If non-zero, indicates that the variable value is a nominal value used when a measured or calibrated value is not available for
a mandatory variable.

 float calibrated_frequency(frequency) M Frequencies for which transducer gain values have been estimated during the calibration exercise.

 :long_name = "Calibration gain frequencies"

 :units = "Hz"

 float :valid_min = 0.0

34

Description Obligation Comment

 float transmit_bandwidth(ping_time,
tx_beam)

O Estimated bandwidth of the transmitted pulse. For CW pulses, this is a function of the pulse duration and frequency. For FM
pulses, this will be close to the difference between transmit_frequency_start and transmit_frequency_stop.

 :long_name = "Nominal bandwidth of transmitted pulse"

 :units = "Hz"

 float :valid_min = 0.0

 float transmit_duration_nominal(ping_time,
tx_beam)

M Nominal duration of the transmit pulse. This is not the effective pulse duration.

 :long_name = "Nominal duration of transmitted pulse"

 :units = "s"

 float :valid_min = 0.0

 int :substitute_value_used = 0 If non-zero, indicates that the variable value is a nominal value used when a measured or calibrated value is not available for
a mandatory variable.

 pulse_t transmit_pulse_model_r(ping_time,
tx_beam)

MA Real part of the model of the transmit pulse. The exact shape of the theoretical transmit pulse is given at the same sampling
rate of the backscatter measurements. The shape reflects both the weighting of the pulse and the filters that have been
applied. The pulse shape is used for matched filtering of complex samples in type 4 conversion equations.

 :long_name = "Real part of the model of the transmit pulse"

 float :valid_min = −1.0

 float :valid_max = 1.0

 pulse_t transmit_pulse_model_i(ping_time,
tx_beam)

MA Imaginary part of the model of the transmit pulse. The exact shape of the theoretical transmit pulse is given at the same
sampling rate as the backscatter measurements. The shape reflects both the weighting of the pulse and the filters that have
been applied. The pulse shape is used for matched filtering of complex samples in type 4 conversion equations.

 :long_name = "Imaginary part of the model of the transmit pulse"

 float :valid_min = −1.0

 float :valid_max = 1.0

 float receive_duration_effective(ping_time,
tx_beam)

MA Effective duration of the received pulse. This is the duration of the square pulse containing the same energy as the actual
receive pulse. This parameter is either theoretical or comes from a calibration exercise and adjusts the nominal duration of
the transmitted pulse to the measured one. During calibration it is obtained by integrating the energy of the received signal
on the calibration target normalised by its maximum energy. Necessary for type 1, 2, 3 and 4 conversion equations.

 :long_name = "Effective duration of received pulse"

 :units = "s"

35

Description Obligation Comment

 float :valid_min = 0.0

 int :substitute_value_used = 0 If non-zero, indicates that the variable value is a nominal value used when a measured or calibrated value is not available for
a mandatory variable.

 float transmit_frequency_start(ping_time,
tx_beam)

M Frequency at the start of the transmit pulse. The beam dimension can be omitted, in which case the value apples to all beams
in the ping.

 :long_name = "Start frequency in transmitted pulse"

 :standard_name = "sound_frequency"

 :units = "Hz"

 float :valid_min = 0.0

 float transmit_frequency_stop(ping_time,
tx_beam)

M Frequency at the end of the transmit pulse. The beam dimension can be omitted, in which case the value apples to all beams
in the ping.

 :long_name = "Stop frequency in transmitted pulse"

 :standard_name = "sound_frequency"

 :units = "Hz"

 float :valid_min = 0.0

 float transmit_power(ping_time, tx_beam) MA Electrical transmit power used for the ping. Necessary for type 1 conversion equations

 :long_name = "Nominal transmit power"

 :units = "W"

 float :valid_min = 0.0

 float transmit_source_level(ping_time,
tx_beam)

MA Source level generated by the transmit ping. Necessary for type 2 conversion equations.

 :long_name = "Transmit source level (re 1 μPa at 1 m)"

 :units = "dB"

 int :substitute_value_used = 0 If non-zero, indicates that the variable value is a nominal value used when a measured or calibrated value is not available for
a mandatory variable.

 float
transmitter_and_receiver_coefficient(ping_time
)

MA Sum of transmit source level (dB re 1 μPa at 1 m), voltage sensitivity (dB re 1 V/μPa), and system gain (dB). Necessary for type
6 conversion equations.

 :long_name = "Transmitter and receiver coefficient"

36

Description Obligation Comment

 :units = "dB"

 int :substitute_value_used = 0 If non-zero, indicates that the variable value is a nominal value used when a measured or calibrated value is not available for
a mandatory variable.

 transmit_t transmit_type(ping_time,
tx_beam)

M Type of transmit pulse.

 :long_name = "Type of transmitted pulse"

 int receive_transducer_index(beam) MA Receiving or monostatic transducer index associated with the given beam

 :valid_min = "0"

 :long_name = "Receive transducer index"

 int transmit_transducer_index(ping_time,
tx_beam)

MA Transmitting or monostatic transducer index associated with the given transmit beam

 :valid_min = "0"

 :long_name = "Transmit transducer index"

 int transmit_beam_index(ping_time, beam) MA Transmit beam index associated with the given beam

 :valid_min = "0"

 :long_name = "Transmit beam index associated with the given beam"

 int active_MRU(ping_time) MA Indicate the index of the MRU sensor used at the time of the ping to compute the platform attitude.

 :valid_min = "0"

 :long_name = "Active MRU sensor index"

 :coordinates = "ping_time platform_latitude platform_longitude"

 int active_position_sensor(ping_time) MA Indicate the index of the position sensor used at the time of the ping to compute the platform position.

 :valid_min = "0"

 :long_name = "Active position sensor index"

 :coordinates = "ping_time platform_latitude platform_longitude"

 float sound_speed_at_transducer(ping_time) O Sound speed at transducer depth at the time of the ping

 :long_name = "Indicative sound speed at ping time and transducer depth"

 :units = "m/s"

 float :valid_min = 0.0

37

Description Obligation Comment

 :standard_name = "speed_of_sound_in_sea_water"

 :coordinates = "ping_time platform_latitude platform_longitude"

 double platform_latitude(ping_time) M Latitude of the platform reference point in WGS-84 reference system at the time of the ping.

 double :valid_range = −90.0, 90.0

 :standard_name = "Platform latitude"

 :units = "degrees_north"

 :long_name = "latitude"

 :coordinates = "ping_time platform_latitude platform_longitude"

 double platform_longitude(ping_time) M Longitude of the platform reference point in WGS-84 reference system at the time of the ping.

 double :valid_range = −180.0, 180.0

 :standard_name = "Platform longitude"

 :units = "degrees_east"

 :long_name = "longitude"

 :coordinates = "ping_time platform_latitude platform_longitude"

 float platform_heading(ping_time) M Heading of the platform at time of the ping.

 :standard_name = "platform_orientation"

 :units = "degrees_north"

 :long_name = "Platform heading(true)"

 float :valid_range = 0, 360.0

 :coordinates = "ping_time platform_latitude platform_longitude"

 float platform_pitch(ping_time) M Platform pitch at the time of the ping.

 :standard_name = "platform_pitch_angle"

 :units = "arc_degree"

 :long_name = "pitch angle"

 float :valid_range = −90.0, 90.0

 :coordinates = "ping_time platform_latitude platform_longitude"

 float platform_roll(ping_time) M Platform roll at the time of the ping.

38

Description Obligation Comment

 :standard_name = "platform_roll_angle"

 :units = "arc_degree"

 :long_name = "roll angle"

 :coordinates = "ping_time platform_latitude platform_longitude"

 float platform_vertical_offset(ping_time) M Distance from the platform reference point to the water line (distance are positives downwards). For ships and similar, this is
called heave and is added to the dynamic draught at the time of the ping but the concept applies equally well to underwater
vehicle depth.

 :long_name = "Platform vertical distance from reference point to the water line"

 :units = "m"

 :coordinates = "ping_time platform_latitude platform_longitude"

 float tx_transducer_depth(ping_time) O Tx transducer depth below waterline at time of the ping (distance are positives downwards). This variable can be recomputed
in most cases by applying lever arm and rotation matrix taking into account for roll and pitch, platform_vertical_offset but
can also take into account for drop keel position

 :long_name = "Tx transducer depth below waterline"

 :units = "m"

 :coordinates = "ping_time platform_latitude platform_longitude"

 float waterline_to_chart_datum(ping_time) O Vertical translation vector at the time of the ping matching the distance from the water line to the chart data reference
(typically Lowest Astronomical Tide or Mean Sea Level). This variable is the vector that contains the tide and allows for the
positioning of samples in an absolute reference system.

 :long_name = "vertical translation from waterline to chart datum reference "

 :units = "m"

 :coordinates = "ping_time platform_latitude platform_longitude"

 :vertical_coordinate_reference_system = "MSL depth" The vertical datum to which distance are referred to. Possible values are 'MSL Depth' or 'LAT Depth'

Subgroups

 ADCP O Subgroup containing ADCP calculated current velocity data.

 SingleTarget O Subgroup containing split-beam detected single-target data.

39

3.9.6. Proposed Single Target additions

This group contains the single target detections from split-aperture beams positioned with their range and split-aperture arrival angles. Target
Strength (TS) is calculated using conversion equations detailed in Chapter 4. Algorithm for single target detection and parameters are detailed in
Soule et al. (1997). The netCDF4 group name is /Sonar/Beam_group/SingleTarget.

Table 12. Description of the single_target subgroup of the beam group.

Description Obligation Comment

Types

 int(*) target_identifier Variable length vector used to store array of index of single target data detections.

 float(*) target_range Variable length vector used to store array of range of single target data detections.

 float(*) target_angle Variable length vector used to store variable length array of angle of single target detections.

 float(*) target_TS Variable length vector used to store variable length array of Target Strength of single target detections.

Variables

 int single_target_count(ping_time, beam) O The number of single target detection in each beam/ping in the single_target_XXX variables. This value is not essential, but
software that reads the vlen variables can use it to significantly improve data loading times.

 :long_name = "Number of single target detection in each beam, per ping"

 int :valid_min = 0

 target_identifier
single_target_identifier(ping_time,beam)

MA Label of single target detected and possibly tracked on multiple pings. All single targets have a new unique identifier when
detected, if a tracking algorithm is used the identifier of a new target can be changed to an existing one so that it can be
identified as the same target.

 :long_name = "Index of single target detected"

 target_range
single_target_range(ping_time,beam)

MA Range from the transducer face where the single target detection criteria were encountered for the amplitude and the phase
of the backscattered echoes. Calculation of the range is similar to detected_bottom_range defined in the BeamGroup with
possible weighting of the range by the backscattervalue within the pulse shape.

 :units = "m"

 :long_name = "Range of single target detected"

 target_angle
single_target_alongship_angle(ping_time,beam)

MA Angle of single target detected in the minor beam coordinate.

 :units = "arc_degree"

 :long_name = "Single target arrival angle in the minor beam coordinate"

40

Description Obligation Comment

 float :valid_range = −180.0, 180.0

 target_angle
single_target_athwartship_angle(ping_time,bea
m)

MA Angle of single target detected in the major beam coordinate.

 :units = "arc_degree"

 :long_name = "Single target arrival angle in the major beam coordinate"

 float :valid_range = −180.0, 180.0

 target_TS
compensated_TS(ping_time,beam,frequency)

MA Calculated beam compensated Target Strength.

 :units = "dB"

 :long_name = "Calculated Target Strength (re 1 m2) after compensation for off-axis angle for each frequency of the receive echo from spectral analysis of the FM pulse or frequency of the CW
pulse"

 target_TS
uncompensated_TS(ping_time,beam,frequency)

MA Calculated beam uncompensated Target Strength.

 :units = "dB"

 :long_name = "Calculated Target Strength (re 1 m2) uncompensated for off-axis angle for each frequency of the receive echo from spectral analysis of the FM pulse or frequency of the CW
pulse"

 float param_TS_threshold(ping_time,beam) MA TS threshold for single target detection

 :units = "dB"

 :long_name = "Minimum TS (re 1 m2) threshold for single target detection"

 float
param_gain_compensation(ping_time,beam)

MA Gain compensation for single target detection

 :units = "dB"

 :long_name = "Maximum one-way angular gain compensation for single target detection"

 float
param_minimum_echo_duration(ping_time,be
am)

MA Minimimum echo duration for single target detection

 :long_name = "Minimimum normalized echo duration for single target detection relative to nominal pulse duration"

 float
param_maximum_echo_duration(ping_time,be
am)

MA Maximimum echo duration for single target detection

41

Description Obligation Comment

 :long_name = "Maximimum normalized echo duration for single target detection relative to nominal pulse duration"

 float
param_maximum_phase_deviation(ping_time,
beam)

MA Maximimum phase deviation for single target detection

 :units = "arc_degree"

 :long_name = "Maximimum phase standard deviation for single target detection"

 float
param_minimum_echo_spacing(ping_time,bea
m)

MA Minimum echo spacing for single target detection

 :long_name = "Minimum distance between two single targets detected relative to nominal pulse duration"

 float
param_TSf_processing_window_duration(ping_
time, beam)

MA TS(f) processing window duration.

 :units = "s"

 :long_name = "Duration of the processing window for spectral analysis around the peak echo value for single target detection"

42

3.9.7. Proposed ADCP additions

This group contains the ADCP beam data, single ping calculations and associated metadata. The netCDF4 group name is /Sonar/Beam_groupX/ADCP.

Table 13. Description of the ADCP subgroup of the BeamGroup1 group.

Description Obligation Comment

Types

 float(*) sample_v Variable length vector used to store ragged arrays of velocity data. Type added for ADCP.

Variables

 float backscatter_at_bottom_i(ping_time,
beam)

MA Backscatter value(imaginary part) at detected bottom, in each beam.

 :units = "W"

 :long_name = "Raw backscatter at bottom (imaginary part)"

 float backscatter_at_bottom_r(ping_time,
beam)

MA Backscatter value(real part) at detected bottom, in each beam.

 :units = "W"

 :long_name = "Raw backscatter at bottom (real part)"

 float bin_lenght(ping_time) MA Distance covered by transmit pulse.

 :units = "m"

 :long_name = "Distance covered by transmit pulse"

 float :valid_range = 0.0, 20.0

 float
bottom_track_velocity_vessel_x(ping_time)

MA Calculated bottom track velocity, pos in vessel coordinate x direction, forward.

 :units = "m/s"

 :long_name = "Calculated bottom track velocity value relative own vessel, direction x"

 float :valid_range = -50.0, 50.0

 float
bottom_track_velocity_vessel_y(ping_time)

MA Calculated bottom track velocity, pos in vessel coordinate y direction, starboard.

 :units = "m/s"

 :long_name = "Calculated bottom track velocity value relative own vessel, direction y"

43

Description Obligation Comment

 float :valid_range = -50.0, 50.0

 float
bottom_track_velocity_vessel_z(ping_time)

MA Calculated bottom track velocity, pos in vessel coordinate z direction, down.

 :units = "m/s"

 :long_name = "Calculated bottom track velocity value relative own vessel, direction z"

 float :valid_range = -50.0, 50.0

 sample_t correlation(ping_time, beam) MA Calculated beam correlation. Each element in the 2D matrix is a variable length vector (of type sample_t)that contains the
calculated correlation along that beam and ping time

 :units = "%"

 :long_name = "Calculated beam correlation"

 float :valid_range = 0.0, 100.0

 int correlation_at_bottom(ping_time, beam) MA Correlation at detected bottom, in each beam.

 :units = "%"

 :long_name = "Calculated beam correlation at bottom depth"

 int :valid_range = 0, 100

 float correlation_factor_limit(ping_time) MA Filtering parameter. Element discarded if correlation below given limit.

 :units = "%"

 :long_name = "Correlation minimum limit used for filtering current ping"

 float :valid_range = 0.0, 100.0

 sample_v
current_velocity_geographical_down(ping_time
)

MA Calculated water column current velocity, pos in down direction.

 :units = "m/s"

 :long_name = "Calculated water current velocity values for the geographical down direction"

 float :valid_range = -50.0, 50.0

 sample_v
current_velocity_geographical_east(ping_time)

MA Calculated water column current velocity, pos in east direction.

 :units = "m/s"

 :long_name = "Calculated water current velocity values for the geographical east direction"

44

Description Obligation Comment

 float :valid_range = -50.0, 50.0

 sample_v
current_velocity_geographical_north(ping_time
)

MA Calculated water column current velocity, pos in north direction.

 :units = "m/s"

 :long_name = "Calculated water current velocity values for the geographical north direction"

 float :valid_range = -50.0, 50.0

 sample_v
current_velocity_vessel_x(ping_time)

O Calculated vessel relative water column current velocity, in x direction.

 :units = "m/s"

 :long_name = "Calculated water current velocity values relative own vessel, direction x"

 float :valid_range = -50.0, 50.0

 sample_v
current_velocity_vessel_y(ping_time)

O Calculated vessel relative water column current velocity, in y direction.

 :units = "m/s"

 :long_name = "Calculated water current velocity values relative own vessel, direction y"

 float :valid_range = -50.0, 50.0

 sample_v
current_velocity_vessel_z(ping_time)

O Calculated vessel relative water column current velocity, in z direction.

 :units = "m/s"

 :long_name = "Calculated water current velocity values relative own vessel, direction z"

 float :valid_range = -50.0, 50.0

 float depth_first_sample_center(ping_time) MA Depth from surface to first valid sample center.

 :units = "m"

 :long_name = "Depth from surface to first valid sample center"

 sample_v error_velocity(ping_time) O Calculated error velocity, Quality factor, low value indicates homogenous water current layer and high measurement quality.

 :units = "m/s"

 :long_name = "Calculated error velocity"

 float :valid_min = 0.0

45

Description Obligation Comment

 float error_velocity_limit(ping_time) MA Filtering parameter. Vessel and geographical current velocity sample discarded if error velocity is above given limit.

 :units = "m/s"

 :long_name = "Error velocity maximum limit used for filtering current ping"

 float :valid_range = 0.0, 100.0

 float
transmit_duration_nominal_sub_pulse(ping_ti
me)

MA Nominal duration of the transmit sub-pulse. This is in the case where the transmitted pulse consists of a series of sub-pulses.
ADCP specific.

 :units = "s"

 :long_name = "Nominal duration of the transmitted sub-pulse"

 float :valid_min = 0.0

 float
transmit_lag_interval_sub_pulse(ping_time)

MA Lag interval between the transmitted sub-pulse.This is in the case where the transmitted pulse consists of a series of sub-
pulses. ADCP specific.

 :units = "s"

 :long_name = "Lag interval of the transmitted sub-pulse"

 float :valid_min = 0.0

 int quality(ping_time) MA Quality percent for each depth cell.

 :units = "%"

 :long_name = "Quality indicator for the water current velocity calculation"

 int :valid_range = 0, 100

 float scaling_factor MA Scaling factor from ADCP calibration used in velocity calculations.

 :long_name = "Scaling factor for velocity calculations"

 float :valid_range = 0.0, 2.0

 float slant_range_to_bottom(ping_time,
beam)

MA Detected bottom in each beam.

 :units = "m"

 :long_name = "Slant range to bottom for each beam"

 int sv_dbw_high_limit(ping_time) MA Filtering parameter. Element discarded if backscatter is above given limit.

 :units = "dB"

46

Description Obligation Comment

 :long_name = "Sv (re 1 m-1) maximum limit used for filtering current ping"

 int :valid_range = -235, 0

 int sv_dbw_low_limit(ping_time) MA Filtering parameter. Element discarded if backscatter is below given limit.

 :units = "dB"

 :long_name = "Sv (re 1 m-1) minimum limit used for filtering current ping"

 int :valid_range = -235, 0

 sample_v velocity(ping_time, beam) O Calculated beam velocity. Each element in the 2D matrix is a variable length vector that contains the calculated velocity along
that beam and ping time.

 :units = "m/s"

 :long_name = "Calculated beam velocity"

 float :valid_range = -50.0, 50.0

 beam_stabilisation_t
velocity_depth_stabilisation(ping_time)

MA Indicates whether samples used for velocity vector calculation have been compensated for platform motion.

 :long_name = "Velocity depth stabilization applied (or not) "

 beam_stabilisation_t
velocity_motion_stabilisation(ping_time)

MA Indicates whether beam velocities have been compensated for platform motion.

 :long_name = "Velocity motion stabilization applied (or not) "

 float vertical_sample_interval(ping_time) M True vertical distance between calculated geographical or vessel relative current values.

 :units = "m"

 :long_name = "Distance between recorded data samples"

 float :valid_min = 0.0

Subgroups

 Mean_current O Subgroup containing calculated averaged current velocity data.

This group contains the calculated averaged current velocity data and associated metadata. The netCDF4 group name is Mean_current and is a
subgroup of ADCP group.

Table 14. Description of the Mean current subgroup of the ADCP group.

47

Description Obligation Comment

Types

 uint64(*) ping_t Variable length vector used to store ping time of pings used in averaging.

Dimensions

 mean_time = unlimited Can be of fixed or unlimited length, as appropriate.

Coordinate variables

 uint64 mean_time(mean_time) M Timestamp for the center of an averaging period.

 :axis = "T"

 :calendar = "gregorian"

 :long_name = "Time-stamp of each ping"

 :standard_name = "time"

 :units = "nanoseconds since 1970-01-01 00:00:00Z" or "nanoseconds since 1601-01-01 00:00:00Z"

Variables

 int averaging(mean_time) M Number of ping averages.

 :long_name = "Number of ping averages"

 int :valid_min = 1

 float
bottom_track_velocity_vessel_x(mean_time)

MA Calculated bottom track velocity, pos in vessel coordinate x direction, forward.

 :units = "m/s"

 :long_name = "Calculated mean bottom track velocity value relative own vessel, direction x"

 float :valid_range = -50.0, 50.0

 float
bottom_track_velocity_vessel_y(mean_time)

MA Calculated bottom track velocity, pos in vessel coordinate y direction, starboard.

 :units = "m/s"

 :long_name = "Calculated mean bottom track velocity value relative own vessel, direction y"

 float :valid_range = -50.0, 50.0

 float
bottom_track_velocity_vessel_z(mean_time)

MA Calculated bottom track velocity, pos in vessel coordinate z direction, down.

 :units = "m/s"

48

Description Obligation Comment

 :long_name = "Calculated mean bottom track velocity value relative own vessel, direction z"

 float :valid_range = -50.0, 50.0

 sample_v
current_velocity_geographical_down(mean_tim
e)

MA Calculated water column current velocity, pos in down direction.

 :units = "m/s"

 :long_name = "Calculated mean water current velocity values for the geographical down direction"

 float :valid_range = -50.0, 50.0

 sample_v
current_velocity_geographical_east(mean_time
)

MA Calculated water column current velocity, pos in east direction.

 :units = "m/s"

 :long_name = "Calculated mean water current velocity values for the geographical east direction"

 float :valid_range = -50.0, 50.0

 sample_v
current_velocity_geographical_north(mean_tim
e)

MA Calculated water column current velocity, pos in north direction.

 :units = "m/s"

 :long_name = "Calculated mean water current velocity values for the geographical north direction"

 float :valid_range = -50.0, 50.0

 sample_v
current_velocity_vessel_x(mean_time)

MA Calculated vessel relative water column current velocity, in x direction.

 :units = "m/s"

 :long_name = "Calculated mean water current velocity values relative own vessel, direction x"

 float :valid_range = -50.0, 50.0

 sample_v
current_velocity_vessel_y(mean_time)

MA Calculated vessel relative water column current velocity, in y direction.

 :units = "m/s"

 :long_name = "Calculated mean water current velocity values relative own vessel, direction y"

 float :valid_range = -50.0, 50.0

49

Description Obligation Comment

 sample_v
current_velocity_vessel_z(mean_time)

MA Calculated vessel relative water column current velocity, in z direction.

 :units = "m/s"

 :long_name = "Calculated mean water current velocity values relative own vessel, direction z"

 float :valid_range = -50.0, 50.0

 float mean_bin_lenght(mean_time) MA Distance covered by transmit pulse.

 :units = "m"

 :long_name = "Distance covered by transmit pulse"

 float :valid_range = 0.0, 20.0

 double mean_platform_heading(mean_time) MA Calculated mean heading for the averaging period.

 :units = "degrees_north"

 :long_name = "Calculated mean heading for the averaging period."

 double :valid_range = 0.0, 360.0

 double mean_platform_latitude(mean_time) MA Latitude representing the averaging period.

 :units = "degrees_north"

 :long_name = "Latitude representing the averaging period."

 double :valid_range = -90.0, 90.0

 double
mean_platform_longitude(mean_time)

MA Longitude representing the averaging period.

 :units = "degrees_east"

 :long_name = "Longitude representing the averaging period."

 double :valid_range = -180.0, 180.0

 double mean_platform_pitch(mean_time) MA Calculated mean pitch for the averaging period.

 :units = "arc_degree"

 :long_name = "Calculated mean pitch for the averaging period."

 double :valid_range = -90.0, 90.0

 double mean_platform_roll(mean_time) MA Calculated mean roll for the averaging period.

 :units = "arc_degree"

50

Description Obligation Comment

 :long_name = "Calculated mean roll for the averaging period."

 double :valid_range = -90.0, 90.0

 double mean_platform_vertical(mean_time) MA Calculated mean vertical offset for the averaging period.

 :units = "m"

 :long_name = "Calculated mean vertical offset for the averaging period. Zero if velocity_depth_stabilisation is true."

 float percent_good_limit MA Filtering parameter. Mean velocity value disgarded if quality below given limit.

 :units = "%"

 :long_name = "Percent good limit used to filter the water current velocities"

 float :valid_range = 0.0, 100.0

 ping_t ping_averaged(mean_time) MA Reference to pings (by ping_time) used for averaging to find start-end of lat, lon, vessel speed, heading etc.

 :long_name = "Time reference to pings used for averaging"

 int quality(mean_time) MA Averaged quality in percent for each depth cell.

 :units = "%"

 :long_name = "Quality indicator for the water current velocity calculation"

 int :valid_range = 0, 100

51

3.9.8. Gridded group

This group contains gridded sonar backscatter data and associated metadata. The netCDF4 group
name is GriddedX, where X is an integer.

52

Table 15. Description of the beam grid subgroups of the sonar group.

Description Obligation Comment

Group attributes

 :beam_mode M Mode of the beam in this subgroup, taken from the defined vocabulary of: “vertical” (a set of beams that form a vertical slice
through the water), ”horizontal” (a set of beams that form a nominally horizontal plane through the water), and ”inspection”
(a set of beams with arbitrary pointing directions).

 conversion_equation_t
:conversion_equation_type

M Type of equation used to convert backscatter measurements into volume backscattering strength and target strength.

Types

 byte enum backscatter_type_t {Sv = 0, Sa = 1} In what form is the acoustic data stored? Controlled vocabulary options include : Sv, Volume backscattering strength (dB re 1
m-1) and Sa, Nautical area scattering coefficient (m2 nmi-2).

 byte enum range_axis_interval_type_t {Range = 0, Depth = 1} Range axis interval by which data have been regridded. Controlled vocabulary includes: Range (metres), Depth relative to
waterline (metres).

 byte enum ping_axis_interval_type_t {Time_seconds = 0,
Distance_nautical_miles = 1, Distance_meters = 2,
Number_of_ping = 3}

Ping axis interval by which data have been regridded. Controlled vocabulary includes: Time based intervals (Time (seconds)
), Distance based intervals (Distance (nautical miles); Distance (metres)), Ping based intervals (Number of pings).

Dimensions

 beam The number of receive beams in this grid group.

 tx_beam The number of transmit beams in this grid group.

 frequency The number of frequencies in this grid group.

 ping_axis Number of cells in ping dimension.

 range_axis Number of cells in range dimension.

Variables

 string beam(beam) M Beam name (or number or identification code).

 :long_name = "Beam name"

 float frequency(frequency) M Frequency.

 :long_name = "Frequency of the receive echo from spectral analysis of the FM pulse or frequency of the CW pulse."

 :units = "Hz"

 float :valid_min = 0.0

 string beam_reference(frequency) M Beam name used for a given frequency.

53

Description Obligation Comment

 :long_name = "Reference to the beam for a given frequency"

 backscatter_type_t
backscatter_type(frequency)

M Standard definition of backscatter unit.

 :long_name = "Backscatter type for gridded data"

 ping_axis_interval_type_t
ping_axis_interval_type

MA Reference for regridding data in ping axis.

 :long_name = "Interval type for regridding the data in ping axis"

 float ping_axis_interval_value M Value for data ping axis interval according to its specified type.

 :long_name = "Ping axis interval for regridding the data"

 range_axis_interval_type_t
range_axis_interval_type

M Reference for regridding the data in range or depth axis.

 :long_name = "Interval type for regridding the data in range axis"

 float range_axis_interval_value M Value for data range axis interval according to its specified type.

 :long_name = "Range axis interval for regridding the data"

 uint64 cell_ping_time(ping_axis, tx_beam) M Mean timestamp of the pings contributing to the cell.

 :axis = "T"

 :calendar = "gregorian"

 :long_name = "Mean time-stamp of each cell"

 :standard_name = "time"

 :units = "nanoseconds since 1970-01-01 00:00:00Z" or "nanoseconds since 1601-01-01 00:00:00Z"

 :coordinates = "ping_axis platform_latitude platform_longitude"

 float integrated_backscatter(ping_axis,
range_axis, frequency)

M Integrated backscatter measurement.

 :long_name = "Integrated backscatter of the raw backscatter measurements sampled in this cell for each frequency."

 :units = "as appropriate" Use units appropriate for the data.

 float beamwidth_receive_major(ping_axis,
beam)

M One-way beam width at half power down in the horizontal direction of the receive beam.

 :long_name = "Half power one-way receive beam width along major (horizontal) axis of beam"

 :units = "arc_degree"

54

Description Obligation Comment

 float :valid_range = 0.0, 360.0

 float beamwidth_receive_minor(ping_axis,
beam)

M One-way beam width at half power down in the vertical direction of the receive beam.

 :long_name = "Half power one-way receive beam width along minor (vertical) axis of beam"

 :units = "arc_degree"

 float :valid_range = 0.0, 360.0

 float beamwidth_transmit_major(ping_axis,
tx_beam)

MA One-way beam width at half power down in the horizontal direction of the transmit beam.

 :long_name = "Half power one-way transmit beam width along major (horizontal) axis of beam"

 :units = "arc_degree"

 float :valid_range = 0.0, 360.0

 float beamwidth_transmit_minor(ping_axis,
tx_beam)

MA One-way beam width at half power down in the vertical direction of the transmit beam.

 :long_name = "Half power one-way transmit beam width along minor (vertical) axis of beam"

 :units = "arc_degree"

 float :valid_range = 0.0, 360.0

 float rx_beam_rotation_phi(ping_axis, beam) M The intrinsic z–y’–x” clockwise rotation about the x-axis of the platform coordinate system needed to give the receive beam
coordinate system. For ships and similar, if installation angles are close to zero, this rotation usually matches the beam
pointing angle in the across track direction.

 :long_name = "receive beam angular rotation about the x axis"

 :units = "arc_degree"

 float :valid_range = −180.0, 180.0

 float rx_beam_rotation_theta(ping_axis,
beam)

M The intrinsic z–y’–x” clockwise rotation about the y-axis of the platform coordinate system needed to give the receive beam
coordinate system. For ships and similar, if installation angles are close to zero, this rotation usually matches the beam
pointing angle in the along track direction (also called tilt angle).

 :long_name = "receive beam angular rotation about the y axis"

 :units = "arc_degree"

 float :valid_range = −90.0, 90.0

 float rx_beam_rotation_psi(ping_axis, beam) M The intrinsic z–y’–x” clockwise about the z-axis of the platform coordinate system needed to give the receive beam coordinate
system. For most cases this angle is set to zero.

55

Description Obligation Comment

 :long_name = "receive beam angular rotation about the z axis"

 :units = "arc_degree"

 float :valid_range = −180.0, 180.0

 float tx_beam_rotation_phi(ping_axis,
tx_beam)

M The intrinsic z–y’–x” clockwise rotation about the x-axis of the platform coordinate system needed to give the transmit beam
coordinate system. For ships and similar, if installation angles are close to zero, this rotation usually matches the beam
pointing angle in the across track direction.

 :long_name = "transmit beam angular rotation about the x axis"

 :units = "arc_degree"

 float :valid_range = −180.0, 180.0

 float tx_beam_rotation_theta(ping_axis,
tx_beam)

M The intrinsic z–y’–x” clockwise about the y-axis of the platform coordinate system needed to give the transmit beam
coordinate system. For ships and similar, if installation angles are close to zero, this rotation usually matches the beam
pointing angle in the along track direction (also called tilt angle).

 :long_name = "transmit beam angular rotation about the y axis"

 :units = "arc_degree"

 float :valid_range = −90.0, 90.0

 float tx_beam_rotation_psi(ping_axis,
tx_beam)

M The intrinsic z–y’–x” clockwise about the z-axis of the platform coordinate system needed to give the transmit beam
coordinate system. For most cases this angle is set to zero.

 :long_name = "transmit beam angular rotation about the z axis"

 :units = "arc_degree"

 float :valid_range = −180.0, 180.0

 beam_stabilisation_t
beam_stabilisation(ping_axis)

M Indicates whether or not sonar beams have been compensated for platform motion.

 :long_name = "Beam stabilisation applied (or not)"

 :coordinates = "ping_axis platform_latitude platform_longitude"

 beam_t beam_type(beam) M Type of split-aperture beam (or not).

 :long_name = "Type of beam"

 float equivalent_beam_angle(ping_axis,
beam)

M Equivalent beam angle.

 :long_name = "Equivalent beam angle"

56

Description Obligation Comment

 :units = "sr"

 float :valid_range = 0.0, 12.56637061435917295385 Maximum value is equivalent to 4π.

 float gain_correction(ping_axis, beam) MA Gain correction. This parameter is set from a calibration exercise. Necessary for type 2 conversion equation.

 :long_name = "Gain correction"

 :units = "dB"

 short non_quantitative_processing(ping_axis) M Settings of any processing that is applied prior to recording backscatter data that may prevent the calculation of calibrated
backscatter. A value of 0 always indicates no such processing.

 :flag_meanings Space-separated list of non-quantitative processing setting words or phrases. The first item must always be the no non-
quantitative processing setting and subsequent items as appropriate to the sonar and data(e.g.
”no_non_quantitative_processing simrad_noise_filter_weak simrad_noise_filter_medium simrad_noise_filter_strong”).

 short :flag_values List of unique values (e.g. 0, 1, 3, 4) that indicate different non-quantitative processing settings that could be present in the
sonar data. Must have the same number of values as settings given in the flag_meanings attribute.

 :long_name = "Presence or not of non-quantitative processing applied to the backscattering data (sonar specific)"

 :coordinates = "ping_axis platform_latitude platform_longitude"

 float receiver_sensitivity(ping_axis, beam) MA Sensitivity of the sonar receiver for the current ping. Necessary for type 2 conversion equation.

 :long_name = "Receiver sensitivity (re 1/μPa)"

 :units = "dB"

 float sample_interval(ping_axis, beam) M Time between individual samples along a beam. Common for all beams in a ping.

 :long_name = "Interval between recorded raw data samples"

 :units = "s"

 float :valid_min = 0.0

 :coordinates = "ping_axis platform_latitude platform_longitude"

 float sample_time_offset(ping_axis, tx_beam) M Time offset applied to sample time-stamps and intended for applying a range correction (e.g. as caused by signal processing
delays). Positive values reduce the calculated range to a sample. The range of a given sample at index sample_index and if a
constant sound speed is applied is given by range=
sound_speed_at_transducer*(blanking_interval+sample_index*sample_interval - sample_time_offset)/2

 :long_name = "Time offset that is subtracted from the timestamp of each sample"

 :units = "s"

 float blanking_interval(ping_axis, beam) M Amount of time during reception where samples are discarded. The number of discarded sample is given by
blanking_interval*sample_interval.

57

Description Obligation Comment

 :long_name = "Amount of time during reception where samples are discarded"

 :units = "s"

 :valid_min = "0.0"

 float detected_bottom_range(ping_axis,
beam)

O Range from the transducer face where the bottom detection criteria were encountered for the amplitude or the phase of the
backscattered echoes. The range of the bottom at index bottom_index with a monostatic transducer and if a constant sound
speed is applied is given by detected_bottom_range=
sound_speed_at_transducer*(blanking_interval+bottom_index*sample_interval - sample_time_offset)/2.

 :long_name = "Detected range of the bottom"

 :units = "m"

 :valid_min = "0.0"

 sample_t time_varied_gain(ping_axis) MA Time-varied gain (TVG) used for each ping. Should contain TVG coefficient vectors. Necessary for type 2 conversion equations.

 :long_name = "Time-varied-gain coefficients"

 :units = "dB"

 :coordinates = "ping_axis platform_latitude platform_longitude"

 float transducer_gain(ping_axis, frequency) MA Gain of the transducer beam. This is the parameter that is set from a calibration exercise. Necessary for conversion equation
type 1.

 :long_name = "Gain of transducer"

 :units = "dB"

 float transmit_bandwidth(ping_axis,
tx_beam)

O Estimated bandwidth of the transmitted pulse. For CW pulses, this is a function of the pulse duration and frequency. For FM
pulses, this will be close to the difference between transmit_frequency_start and transmit_frequency_stop.

 :long_name = "Nominal bandwidth of transmitted pulse"

 :units = "Hz"

 float :valid_min = 0.0

 float transmit_duration_nominal(ping_axis,
tx_beam)

M Nominal duration of the transmit pulse. This is not the effective pulse duration.

 :long_name = "Nominal duration of transmitted pulse"

 :units = "s"

 float :valid_min = 0.0

58

Description Obligation Comment

 float receive_duration_effective(ping_axis,
tx_beam)

MA Effective duration of the received pulse. This is the duration of the square pulse containing the same energy as the actual
receive pulse. This parameter is either theoretical or comes from a calibration exercise and adjusts the nominal duration of
the transmitted pulse to the measured one. During calibration it is obtained by integrating the energy of the received signal
on the calibration target normalised by its maximum energy. Necessary for type 1, 2,3 and 4 conversion equations.

 :long_name = "Effective duration of received pulse"

 :units = "s"

 float :valid_min = 0.0

 float transmit_frequency_start(ping_axis,
tx_beam)

M Frequency at the start of the transmit pulse. The beam dimension must be present, even if all beams have the same start
frequency.

 :long_name = "Start frequency in transmitted pulse"

 :standard_name = "sound_frequency"

 :units = "Hz"

 float :valid_min = 0.0

 float transmit_frequency_stop(ping_axis,
tx_beam)

M Frequency at the end of the transmit pulse. The beam dimension must be present, even if all beams have the same stop
frequency.

 :long_name = "Stop frequency in transmitted pulse"

 :standard_name = "sound_frequency"

 :units = "Hz"

 float :valid_min = 0.0

 float transmit_power(ping_axis, tx_beam) MA Electrical transmit power used for the ping. Necessary for type 1 conversion equations

 :long_name = "Nominal transmit power"

 :units = "W"

 float :valid_min = 0.0

 float transmit_source_level(ping_axis,
tx_beam)

MA Source level generated by the transmit ping. Necessary for type 2 conversion equations.

 :long_name = "Transmit source level (re 1 μPa at 1m)"

 :units = "dB"

 transmit_t transmit_type(ping_axis, tx_beam) M Type of transmit pulse.

 :long_name = "Type of transmitted pulse"

59

Description Obligation Comment

 int receive_transducer_index(beam) MA Receiving or monostatic transducer index associated with the given beam

 :valid_min = "0"

 :long_name = "Receive transducer index"

 float sound_speed_at_transducer(ping_axis) O Sound speed at transducer depth at the time of the ping

 :long_name = "Indicative sound speed at ping time and transducer depth"

 :units = "m/s"

 float :valid_min = 0.0

 :standard_name = "speed_of_sound_in_sea_water"

 :coordinates = "ping_axis platform_latitude platform_longitude"

 double cell_latitude(ping_axis, range_axis,
beam)

M Mean latitude of the echoes contributing to the cell in WGS-84 reference system.

 double :valid_range = −90.0, 90.0

 :standard_name = "Platform latitude"

 :units = "degrees_north"

 :long_name = "latitude"

 :coordinates = "ping_axis cell_latitude cell_longitude"

 double cell_longitude(ping_axis, range_axis,
beam)

M Mean longitude of the echoes contributing to the cell in WGS-84 reference system.

 double :valid_range = −180.0, 180.0

 :standard_name = "Platform longitude"

 :units = "degrees_east"

 :long_name = "longitude"

 :coordinates = "ping_axis cell_latitude cell_longitude"

 float cell_depth(range_axis, beam) M Depth of the cell to the water line (distance are positives downwards).

 :long_name = "Cell depth below water line"

 :units = "m"

 float tx_transducer_depth(ping_axis) O Tx transducer depth below waterline at time of the cell (distance are positives downwards).

 :long_name = "Tx transducer depth below waterline"

60

Description Obligation Comment

 :units = "m"

 :coordinates = "ping_axis platform_latitude platform_longitude"

 float waterline_to_chart_datum(ping_axis) O Vertical translation vector at the time of the ping matching the distance from the water line to the chart data reference
(typically Lowest Astronomical Tide or Mean Sea Level). This variable is the vector that contains the tide and allows for the
positioning of samples in an absolute reference system.

 :long_name = "vertical translation from waterline to chart datum reference "

 :units = "m"

 :coordinates = "ping_time platform_latitude platform_longitude"

 :vertical_coordinate_reference_system = "MSL depth" The vertical datum to which distance are referred to. Possible values are 'MSL Depth' or 'LAT Depth'

61

3.9.9. Interpretation

This group contains the interpretation masks. the interpretation mask is independent of the ping or
grid and can be used for data in both the Gridded and Beam_group. The netCDF4 group name is
InterpretationX, where X is an integer.

The interpretation masks are based on a time and range, for a given a sound speed.

An proposal for storing interpretation masks in a netCDF4 structure is being developed here, with
the actual netCDF4 structure provided as an example here.

more to come

3.9.10. Vendor specific group

The vendor specific group contains information about the sonar and data specific to the sonar. Data
in this group must not be necessary for normal quantitative use of the sonar data. The contents of
this group are at the discretion of the sonar and software that writes the SONAR-netCDF4 file. The
netCDF4 group name is /Vendor_specific. Currently, there is no mandatory information for the
vendor specific group.

62

https://github.com/nilsolav/EchosounderNetCDF
https://github.com/nilsolav/EchosounderNetCDF/blob/master/docs/demo_mask.cdl

Chapter 4. Conversion equations
This section provides detailed formulae on how to convert the backscatter data in the Sonar group
into calibrated target strength and volume backscatter strength.

4.1. Type 1
Type 1 conversion equations are used for data recorded by the Simrad SU90, SX90, and SH90
omnisonars and are presented in detail by Macaulay et al. (2016).

The complex-valued backscatter data are converted into calibrated target strength via:

where is linearly proportional to the received power (square of the magnitude of the complex
number given by backscatter_r and backscatter_i, W) and r is the range between the transducer
and target, calculated from:

where c is sound speed (NetCDF4 variable is sound_speed_indicative, m/s), dt is the time between
recorded samples (sample_interval, s), i is the sample number (from zero to one less than the
number of samples), and is a time-offset (sample_time_offset-blanking_interval, s).

The absorption coefficient of sound in water is α (absorption_indicative, dB/m), is the transmit
power (transmit_power, W), is the acoustic wavelength (derived from the average of
transmit_frequency_start and transmit_frequency_stop, and sound_speed_indicative, m), G is the
transducer gain (transducer_gain, dB), and is the beam tilt angle (derived from beam_direction_x,
beam_direction_y, beam_direction_z, degrees from horizontal).

The volume backscatter strength (Sv, MacLennan et al. (2002)) is derived from a similar equation:

where is the equivalent beam angle (equivalent_beam_angle, sr), is the effective pulse duration
(receive_duration_effective, s), and _G is the transducer gain (transducer_gain, dB).

4.2. Type 2
Type 2 conversion equations are intended for data recorded by Furuno omnisonars. The received
real-valued backscatter data are converted into calibrated target strength via:

where A (backscatter_r, 1) is linearly proportional to the amplitude of the received echo , r is the

63

range as given by equation \eqref{eq:timeToRange}, and α is the absorption coefficient of sound in
water (absorption_indicative, dB/m). SL is source level (transmit_source_level (re 1μPa at 1 m), dB)
and K is receiver sensitivity (receiver_sensitivity (re 1/μPa), dB). Both parameters may depend on
tilt angle of the beam for transmitting and receiving.

Gain correction, , (gain_correction, dB) is determined by the calibration. Time-varied gain,
(time_varied_gain, dB), is given at each sample number i.

The volume backscatter strength is derived from a similar equation:

where c is sound speed (sound_speed_indicative, m/s), is the effective pulse duration
(receive_duration_effective, s), and is the equivalent beam angle (equivalent_beam_angle, sr).
Considering the time-varied-gain (TVG) effect on the echo shape (Sawada and Furusawa, 1993), the
replacement of r by , where , is recommended (MacLennan, 1986; Furusawa et al.,
1999) for calculation of .

4.3. Type 3
Type 3 conversion equations are intended for data produced by Simrad EK60, ES60, and ES70
echosounders.

The backscatter power values are stored in the backscatter_r variable with data type short (16-bit
signed integers) that are converted to logarithmic received power via:

where is the compressed power value stored in the backscatter_r variable and the logarithmic
received power that is transformed into calibrated target strength via:

where is the range from the transducer to the target [m], the acoustic absorption [dB m-1], the
transmitted power setting (transmit_power variable), the acoustic wavelength [m], and the on-
axis gain (variable transducer_gain). Beam pattern compensation for echoes that do not arrive on
the transducer axis is done in addition to this equation (if such angles can be estimated, as can be
done with split-aperture transducers). Volume backscatter strength is obtained from a similar
equation:

where is sound speed [m s-1], the equivalent beam angle (variable equivalent_beam_angle), and
 the effective pulse duration (variable receive_duration_effective).

The effective pulse duration is computed for EK60, ES60 and ES70 from the nominal transmit pulse

64

duration (variable transmit_duration_nominal) and the Simrad term in dB from the
calibration exercise as :

The range from the transducer to the target is given by:

Table 16. List of equation symbols and the matching SONAR-netCDF4 variable

Symbol Variable Equation
type

backscatter_r all

transmit_duration_nomi
nal

3

Calculated from …

4.4. Type 4
Type 4 conversion equations are intended for data produced by Simrad EK80 and ES80 broadband
echosounders when data is recorded with complex samples.

EK80 and ES80 can record data using EK60 Power and Angle format and Type 3 equations can then
be used.

In order to take advantage of the broadband mode of the EK80 echosounder, the backscatter
complex amplitude samples are stored in the backscatter_r and the backscatter_i variable with data
type float for each sub-beam corresponding to each sub-array of the transducer (Chapter 6).

For FM transmission mode, in order to increase signal-to-noise ratio and resolution along the beam
axis, pulse compression is used for each sub-beam by convolving the complex backscatter received
signal with a complex conjugated and time reversed version of the theoretical transmit and filtered
pulse (transmit_pulse_model).

Noting , the sample index in the discrete time domain, the pulse compressed complex samples for
each sub-beam denoted are then equal to:

where is the complex received signal stored in the backscatter_r and backscatter_i variables and
 is the complex theoretical transmit and filtered signal stored in transmit_pulse_model_r and

transmit_pulse_model_i variables

The transceiver measures voltage over a load, , connected in series with the transducer
impedance, . The number of sub-beams are stored as the subbeam dimension in the
backscatter variables in Table 11 and received electric power is then equal to :

65

with taken as for CW transmission and as for FM transmission.

For CW transmission, Type 3 equations can then be applied, taking logarithmic received power
as:

and the nominal transmit pulse duration as:

with the duration [s] of the complex theoretical transmit and filtered signal .

For FM transmission, match filtered received electric power is transformed into volume backscatter
strength using:

where is the range from the transducer to the sample [m], the acoustic absorption at the
frequency f [dB m-1], the central frequency of the pulse bandwidth [Hz], the transmitted power
setting (transmit_power variable) [W], the acoustic wavelength [m], is sound speed [m s-1], the
equivalent beam angle at the transducer nominal frequency (variable equivalent_beam_angle),
the effective pulse duration (variable receive_duration_effective) and the on-axis gain (variable
transducer_gain) from the calibration exercise at the frequency .

The match filtered effective pulse duration is computed for EK80 and ES80 from

where is the autocorrelation of the theoretical transmit pulse

and the duration [s]

The use of broadband FM tranmission enables to provide volume backscatter strength as a function
of frequency, through:

where and are the Fourier transforms at frequency f of and , performed
with the same duration/windowing characteristics, is the range [m] from the transducer to the

66

sample centered in the Fourier transform window , and the duration of applied Fourier
transform.

Single target strength as a function of frequency is obtained from a similar equation, for targets
located on beam-axis:

Beam pattern compensation for echoes that do not arrive on the transducer axis may be added to
this equation, if such angles are estimated, as can be done with split-aperture transducers.

4.5. Type 5
Type 5 conversion equation is intended for sonars for which the sonar manufacturer computes
standard TS and Sv values as defined in MacLennan et al. (2002).

Using equation 5, the Sv value is directly stored in the backscatter_r variable and/or the TS value is
directly stored in the backscatter_i variable. It is permitted to store only Sv or only TS values,
meaning that a file could have just a backscatter_r variable, just a backscatter_i variable, or both.

4.6. Type 6
Type 6 conversion equations are intended for data recorded by Furuno FCV-38 echosounder.

The echosouder has a split-aperture transducer with type A arrangement (see Section 6.2.1). It
outputs four complex backscatter signals (backscatter_r, backscatter_i, 1) from beam number 0, 1, 2,
and 3. The signals from beam number 0 and 1 are defined by and ,
respectively, where is the complex signal from quadrant . Similarly, the signals from beam
number 2 and 3 are defined by and , respectively.

Two complex signals, and , are converted into the calibrated target strength via:

where is the amplitude or envelope of the received voltage signal (V), calculated from:

The range between the transducer and target is , calculated from:

67

where is the sound speed (sound_speed_indicative, m/s), is the time between recorded samples
(sample_interval, s), is the sample number (from zero to one less than the number of samples), and

 is the time-offset (sample_time_offset - blanking_interval, s).

The absorption coefficient of sound in water is (absorption_indicative, dB/m). is the
transmitter and receiver coefficient (transmitter_and_receiver_coefficient, dB). The gain correction,

 (gain_correction, dB), is determined by the calibration. Beam pattern compensation for echoes
that do not arrive on the transducer axis is done in addition to equation \eqref{eq:FCV38TS}.

The volume backscatter strength is derived from a similar equation:

where is the effective pulse duration (receive_duration_effective, s) and is the equivalent beam
angle (equivalent_beam_angle, sr).

68

Chapter 5. Coordinate systems
This section provides a complete mathematical overview of the coordinate systems necessary to
physically locate the position of an echo relative to a geographic coordinate system when measured
from a moving or stationary platform. The coordinate systems detailed here follow those used in
some multibeam bathymetric mapping sonars, but in many cases this level of preciseness will be
unnecessary and several coordinate systems will overlap.

There are four right-handed Cartesian coordinate systems (Table 17, Figure 2) associated with the
platform, transducer(s), and acoustic beams. Some of the coordinate systems have different origins
and this is implemented as a translation vector in the input coordinate system. Coordinate system
rotation angles are as per the right-hand rule.

There is also a geographic coordinate system (Figure 2) that provides for location of the platform on
Earth and also the height above a datum (e.g. mean sea level). The platform heading variable
(degrees clockwise from north) can be used to obtain the sonar orientation in the geographic
coordinate system (this applies to both stationary and mobile sonar platforms).

Table 17. List of coordinate systems used to physically locate the position of received echoes.

Coordinate system
name

Origin x-axis y-axis z-axis

Surface coordinate
system (SCS)

Platform origin Pointing horizontally
towards North

Pointing horizontally
towards East

Pointing down with
gravity

Platform coordinate
system (PCS)

Platform origin Parallel to the main axis
of the platform, positive
values toward the front
of the platform

Perpendicular to the
main axis of the
platform, positive values
to the starboard side

Pointing down parallel
to platform mast

Transducer coordinate
system (TCS)

Centre of transducer
face

not stabilized Pointing forward along
transducer plane

Pointing starboard along
transducer plane

Pointing down
orthogonal to
transducer plane

stabilized Pointing forward
horizontally

Pointing horizontally
and perpendicular to x-
axis

Pointing down with
gravity

Sonar Beam coordinate
system (BCS)

Centre of transducer
face

Arbitrary Orthogonal to the x-axis Pointing along the beam
axis

The platform coordinate system (PCS) is obtained from the transducer coordinate system (TCS)
through a translation of the PCS origin and a rotation to align with the transducer face. Transducer
depth and lever arms are applied in this coordinate system.

The surface coordinate system (SCS) is obtained from the platform coordinate system (PCS) through
a rotation that corresponds to the yaw/heading, pitch and roll of the platform. No translation is
necessary. Platform heave is not applied in this coordinate system.

69

NOTE

If a sonar actively alters beam pointing directions to compensate for motion of the
platform including static installation offsets, the beam_stabilisation variable is set to
True, otherwise to False. If True, the transducer coordinate system (TCS) is obtained
from the SCS only through a translation of SCS origin, the transducer adapts its
beam in order to compensate for ship movements

Y

X

North

East

world

¬

¬
world

world

Down

x
y

z

Z

x

y

z

x

y

z
BCS sonar Beam Coordinate System
TCS Transducer Coordinate System
PCS Platform Coordinate System

SCS Surface Coordinate System
TGS Terrestrial Geographic System

¬
latitude
longitude

¬

Figure 2. Coordinate systems used to physically position an echo in an absolute geographical system. The
arrows on the axes indicate the positive direction and the circular arrows around each platform coordinate
system axis indicates positive rotations (Hull drawing based on image from Simrad SN90 manual, redrawn
with permission).

5.1. Coordinate System Transforms
Coordinate system transforms can be expressed as a combination of a Rotation and a
Translation of one coordinate system A into another B.

Transformation of coordinates from A to B can then be implemented as:

Rotation is specified via three rotation variables and can be implemented via matrix multiplication.
As an example, the matrix that will convert a coordinate from coordinate system PCS to coordinate
system SCS is defined by:

70

where is the rotation about the z-axis by h degrees, etc. The rotation symbols are chosen to
reflect their common nautical names: h for heading, p for pitch, and r for roll and used thus:

noting that the order of the matrices is important and should follow this order.

To be clear, the right-hand rule when applied to roll, pitch, and heave means that:

• looking along the positive x-axis, a positive rotation (roll) is clockwise (to starboard),

• looking along the positive y-axis, a positive rotation (pitch) is clockwise (bow up),

• looking along the positive z-axis, a positive rotation (heading) is clockwise (to starboard).

The orientation of the platform is represented using the z–y’–x” Tait-Bryan intrinsic rotation
convention (en.wikipedia.org/wiki/Euler_angles), corresponding to heading, pitch, and roll,
respectively. Intrinsic means that rotations about the y-axis are measured after any rotation about
the z-axis, and rotations about the x-axis are measured after rotations about the y-axis (for
comparison, extrinsic angles are applied relative to a fixed-platform orientation). This is the most
used rotation convention in the maritime field, and the main effect is that roll is measured relative
to the plane tilted by the pitch angle.

Translation are linked to a change of system origin, namely from platform origin and the
transducer origins. The coordinate system offsets of the transducer are given in the Platform group.
These allow for precise specification of the origin of sonar transducer. The offset is a (x,y,z) tuple in
the platform coordinate system. Offsets are to be interpreted as a vector that starts at the platform
coordinate system origin and ends at the transducer position. For example, an offset of (1, 2, –3)
indicates a position that is 1 m toward the bow, 2 m to starboard, and 3 m above the origin of the
platform coordinate system.

Some sensors (e.g. the position, attitude sensor) can have their installation offset and angle defined
in the Platform group and relative to the platform-coordinate system. Those parameters are usually
taken into account by the sensors and the sensor data values are considered to given relatively to
the platform origin (namely roll, pitch should not be compensate for level arms and installation
offset except explicitely specified).

5.2. Split-aperture coordinates
Some sonar beams can estimate the arrival angle of echoes (Chapter 6). These angles are given as
minor and major angles in the sonar beam coordinate system (BCS in Figure 2):

• The z-axis is always the beam axis with the origin at the receive transducer,

71

https://en.wikipedia.org/wiki/Euler_angles

• The minor arrival angle () is given by the angle from the z axis, measured in the x-z plane, and

• The major arrival angle () is given by the angle from the z axis measured in the y-z plane.

Positive minor angles occur in the positive x plane and positive major angles occur in the positive y
plane. Note that this convention does not follow the right-hand-rule for major angles.

For conventional downward-looking echosounders mounted on a ship it is normal that the sonar
beam coordinate system is identical to the transducer coordinate system and hence the split-
aperture minor angle is oriented alongships with positive angles towards the bow and the split-
aperture major angle is oriented athwartships with positive angles to starboard.

5.3. Equations for positioning echoes in a Surface
coordinate system
This section provides examples of equations that can be used to position echoes in a geographical
coordinate system. These example make some assumptions and approximations :

• Speed of sound is constant and as a consequence sound displacement follows a straight line.

• Sound travel time are supposed to be symetrical, ie the travel time from transmitting position to
echo and travel time from echo to receiving position are the same

• Positionning is computed with respect to rx_beam only, meaning we do not make any
computation for intersection between tx_beam and rx_beam and taking into account for the
ship displacement between emission and reception

Two main categories of system are considered as case studies : system with beam stabilization and
pointing angle relative to SCS (typically ME70) and system where beam are not stabilised and beam
pointing angles relative to TCS.

More complex equations and algorithm for more precise positioning or for other sensors are out of
scope of this section.

Given an echo E(beam,i) where i is the sample number (from zero to one less than the number of
samples) and beam the receiving beam considered, several values can be associated with this echo :

• A time stamp given by

• Its range given by equation \eqref{eq:timeToRange}

5.3.1. Beams are stabilized by the sonar and beam pointing angles are
relative to SCS

When beam are stabilized and installation angle offsets are compensated by the sonar their angles
are relative to SCS. The sonar will dynamically change beam angles relative to TCS to follow
platform movement and maintain a constant beam angle with respect to the SCS. The change from
TCS to SCS is composed of a translation from transducer origin to platform origin, taking into

72

account lever arms, and a rotation taking into account platform heading

The position of the echo can be defined as :

with and the split-aperture coordinates as defined in Section 5.2:

and

where are the beam pointings angles as given in the rx_beam_rotation_phi,
rx_beam_rotation_theta, rx_beam_rotation_psi variables of the beam mode subgroups of the sonar
group (see Table 11)

and:

where are the heading, pitch and roll as given at the time of the ping in the platform_heading,
platform_pitch, platform_roll variables of the beam mode subgroups of the sonar group (see Table
11). (Those variables can also be defined at a higher sample rate in the platform group (see Table 4))

and:

where transducer_offset_x, transducer_offset_y and transducer_offset_z are the installation offsets
of the transducer associated with the echo, defined in the platform group (see Table 4)

5.3.2. Beams are not stabilized by the sonar and beam pointing angles are
relative to TCS

When beam are not stabilized by the sonar, the beam angles are given relative to the TCS and the
sonar will not dynamically change the beam angles to follow the platform movement during a
transmit/receive cycle.

The position of the echo can be defined as :

with and the split-aperture coordinates as defined in Section 5.2:

and:

73

where are the beam pointings angles as given in the rx_beam_rotation_phi,
rx_beam_rotation_theta, rx_beam_rotation_psi variables of the beam mode subgroups of the sonar
group (see Table 11)

and:

with transducer_rotation_x, transducer_rotation_y and transducer_rotation_z, the installation
angles of the transducer associated with the echo, defined in the platform group (see Table 4) (Note
that calibration angles are supposed to be integrated in these variables)

and:

with transducer_offset_x, transducer_offset_y and transducer_offset_z the installation offsets of the
transducer associated with the echo, defined in the platform group (see Table 4)

and:

where are the heading, pitch and roll as given in the platform_heading, platform_pitch,
platform_roll variables of the sonar group (see Table 11) or platform group (see Table 4)

5.4. Equations for positioning echoes in a Geographical
Coordinate System
The Surface Coordinate system is a coordinate system oriented with platform heave at the origin of
the platform origin. In order to define an absolute position, the coordinate should be converted to a
Terrestrial Geographic System coordinate and take into account heave, draft, tide and so on.

The Terrestrial Geographic System coordinate will use latitude and longitude to define its' position
with respect to Earth and elevation will be defined with respect to a absolute surface reference. The
absolute surface reference could be the WGS84 ellipsoid, or a surface such as MSL (Mean Sea Level)
or LAT (Lowest Astronomical Tide)

Switching from SCS system to TGS is achieved by applying a vertical translation from the platform
origin to the surface reference of the TGS The vertical translation at each time is a vector obtained
by adding the variables :

• waterline_to_chart_datum matching the distance from the surface reference to the waterline.
This variable takes into account the tide and the surface definition for ship or similar

74

• platform_vertical_offset containing the heave and draft for ship or similar

Each translated coordinate can be then expressed as latitude-longitude coordinates given the
platform position retrieved from GPS and the coordinates expressed in SCS system.

75

Chapter 6. Split-aperture beams
Some sonar beams can estimate the arrival angle of echoes using the split-aperture method and
SONAR-netCDF4 supports several ways to store such angles. The type of split-aperture beam data
contained in a SONAR-netCDF4 file is given by the beam_type variable in each Beam_groupX
subgroup. Split-aperture echo arrival angles are always given in the sonar beam coordinate system
(see Chapter 5).

When sub-beams from a split-aperture transducer are provided, it is also necessary to combine
them to give the power or amplitude of the echoes, as received by the combined beam. All known
split-aperture systems achieve this by taking the average of the sub-beam values, noting that the
sub-beam data are typically complex power or amplitude values.

To allow for existing conventions on how the split-aperture angles are stored or derived (typically
as phase angles between the split-aperture signals), angle sensitivities are given in variables
echoangle_major_sensitivity and echoangle_minor_sensitivity.

6.1. Angles stored in file
The calculation of the echo arrival angle is done by the sonar and the SONAR-netCDF4 file contains
either physical arrival angles or phase angles. For the latter, the minor () and major () physical
arrival angles are obtained by dividing by the minor and major angle sensitivities respectively.
For consistency, when physical arrival angles are stored in the file, and should still be present
and be set to 1.0.

6.2. Angles not stored in file
The sonar does not calculate the echo arrival angle - they are calculated from the split-aperture sub-
beams, each of which are stored in the SONAR-netCDF4 files. Several types of sub-beam
arrangements are supported (Figure 3) - the angle calculation methods for each type are given in
the following sections. The sub-beams are stored as the subbeam dimension in the backscatter
variables in Table 11, in the same order as labelled in Figure 3.

y'

x'

z'

12

3 4

A B C

12

3

12

3

4

Figure 3. The split-aperture transducer arrangements supported by SONAR-netCDF4 (A: 4 quadrants; B: 3
sub-beams; C; 3+1 sub-beams). The Cartesian coordinates show the orientation of the sonar beam
coordinate system relative to the transducer sub-beams (note that the z'-axis points into the page). The
numbers indicate the sub-beam labels for each type of transducer.

76

6.2.1. Four quadrants (type A)

This arrangement has four equal quadrants in the transducer (Figure 3, part A) and the minor ()
and major () angles are calculated thus:

where is the four-quadrant inverse tangent, the complex signal from quadrant , *
indicates the complex conjugate, the phase angle in the minor axis, the phase angle in the
major axis, and and the real and imaginary parts of the complex numbered signals. The angle
sensitivities are for the major axis and for the minor axis.

6.2.2. Three or four sub-beams (type B and C)

This arrangement has either three equal sub-beams (Figure 3, part B) or a centre sub-beam and
three surrounding sub-beams. (Figure 3, part C). Type C can be treated the same as type B once the
centre sub-beam signal is added to each of the outer sub-beam signals. The phase angles between
two pairs of the three sub-beams are then given by (Bodholt, 2001; Bjørnø, 2017):

where is the four-quadrant inverse tangent, the complex signal from quadrant , *
indicates the complex conjugate and and the real and imaginary parts of the complex
numbered signals. The minor () and major () angles are then:

where is the angle sensitivity for the minor axis and the angle sensitivity for the major axis.

77

Chapter 7. Revision history

7.1. Significant changes from version 1 to version 2
Version 2 of this document mades significant changes to the convention presented in version 1.
These are summarised here:

decibel units

The reference values for decibel units have been moved from the units attribute to the variable
description (typically the long_name).

Beam pointing

The method used to specify the beam pointing direction has changed from angles to vectors. A
number of coordinate systems and translations and rotations have also been added to enable the
flexible and complete definition of beam pointing directions.

Platform attributes

Added variables to the Sonar groups to enable storage of geographic position of the platform
interpolated to ping timestamps.

Platform

The platform group can now store data from multiple sensors of the same type.

Platform and Sonar

The transducer description now allows for separate emitting and receiving antennas (as used by
some bathymetric sonars). The sonar beam variable names and descriptions have been updated
to distinguish between transmit and receive beams.

Equation type

• Type 3 and 4 data have been added in order to handle backscatter data from respectively
Simrad EK60 and EK80 echosounders.

• Type 5 data has been added for handling sonars that directly store Sv and/or TS data as
defined in MacLennan et al. (2002).

• Type 6 data has been added for handling data recorded by Furuno FCV-38 echosounder.

Beam

• Added variables for the description and storage of data from split-aperture beams via a
subbeam dimension added in the Sonar group.

• transmit_frequency_start and transmit_frequency_stop cannot now collapse the beam
dimension if all start or stop values are the same (while this increases storage, it will reduce
complexity)

• Explicitly allow for type 5 data to have only Sv, only TS, or both in a file.

• added substitute_value_used attribute to some variables to indicate whether the variable has
a nominal/default value in it, or an actual measured/calibrated value in it. This is useful for
when a value for a mandatory variable is not available.

78

• add an optional variable to hold the number of samples in each beam, for each ping. This can
be used to speed up loading/processing of data files.

Gridded

A new subgroup, Gridded is added to allow for gridded backscatter data (i.e., resampled onto a
consistent time/range grid).

ADCP

A new subgroup, ADCP, has been added to store data from acoustic Doppler current profilers.

SingleTarget

A new subgroup, SingleTarget is added to allow for single target detections using backscatter_r
and backscatter_i or backscater_r and echoangle_major and echoangle_minor. Calculation of
Target Strength (TS) of single targets is given in equation 2,3,4 and 6 for different sonars.

Provenance

Changed the required timestamp format to match that used elsewhere in the convention.

7.2. Changes within a document version
Document version SONAR-netCDF4 version Date Changes

2.0 2.0 April 2022 Significant additions to
support additional sonar types.

1.7 1.0 29 May 2018 Modifications due to ICES CRR
review and editorial process.

1.6 1.0 7 Feburary 2018 Modifications due to further
Topic Group input.

1.5 1.0 20 December 2017 Formatted to ICES CRR style

1.4 1.0 18 September 2017 Added additional CF attributes
to time variables. From Topic
Group input: incorporation of
Type 2 equation and additional
variables to support it.
Consistency and clarity
corrections.

1.3 1.0 21 June 2017 Extensive and significant
modifications derived from
feedback on v1.2, from
creation of test SONAR-HDF4
files, and from implementation
of reading in LSSS.

1.2 1.0 2 February 2017 Further modifications after
internal review.

1.1 1.0 13 January 2017 Modifications after generation
of test datasets.

1.0 1.0 22 December 2016 Draft version for distribution
to ICES WGFAST Topic Group
on “Defining a data format for
omni fisheries sonar”.

79

Chapter 8. Acknowledgements
We are grateful for the thorough and considered contributions from the Marine Acoustics Society of
Japan’s Technical Committee. Advice and experience on the practicalities of reading netCDF files in
analysis software was generously provided by Christian Michelsen Research AS, Echoview
Software, and Nortek AS. Sindre Vatnehol and Arne Johannes Holmin kindly developed software to
generate SONAR-netCDF4 files. We also thank Elodie Fernandez and Jim Biard for their invaluable
reviews and suggestions for improving both the convention and this document.

80

Chapter 9. References
Bjørnø, L. 2017. Applied Underwater Acoustics. Elsevier.

Bodholt, H. 2001. Split-Beam Transducer with 3 Sections. In Proceedings of the 24th Scandinavian
Symposium on Physical Acoustics, pp. 32–39. Ustaoset, Norway.

Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Blower, J., Caron, J., et al. 2017. NetCDF Climate
and Forecast (CF) Metadata Conventions, Version 1.7.

Furusawa, M., Hamada, M., and Aoyama, C. 1999. Near Range Errors in Sound Scattering
Measurements of Fish. Fisheries Science, 65: 109–116.

Gee, L., Doucet, M., Parker, D., Weber, T., and Beaudoin, J. 2012. Is Multibeam Water Column Data
Really Worth the Disk Space? In Conference Proceedings of Hydro12, pp. 81–86. Hydrographic
Society Benelux, Rotterdam, The Netherlands.

ICES. 2016. A Metadata Convention for Processed Acoustic Data from Active Acoustic Systems. SISP
4 TG-AcMeta Version 1.10, ICES WGFAST Topic Group, TG-AcMeta.

ISO. 2014. ISO 19115-1. Geographic Information - Metadata - Part 1:Fundamentals. International
Standard.

Jackson, M. A., Groeber, M. A., Uchic, M. D., Rowenhorst, D. J., and Graef, M. D. 2014. H5ebsd: An
Archival Data Format for Electron Back-Scatter Diffraction Data Sets. Integrating Materials and
Manufacturing Innovation, 3: 1–12.

Macaulay, G. J., Vatnehol, S., Gammelsæter, O. B., Peña, H., and Ona, E. 2016. Practical Calibration of
Ship-Mounted Omni-Directional Fisheries Sonars. Methods in Oceanography, 17: 206–220.

MacLennan, D. N. 1986. Time Varied Gain Functions for Pulsed Sonars. Journal of Sound and
Vibration, 110: 511–522.

MacLennan, D. N., Fernandes, P., and Dalen, J. 2002. A Consistent Approach to Definitions and
Symbols in Fisheries Acoustics. ICES Journal of Marine Science, 59: 365–369.

McQuinn, I. H., Reid, D. G., Berger, L., Diner, N., Heatley, D., Higginbottom, I., Andersen, L. N., et al.
2005. Description of the ICES HAC Standard Data Exchange Format, Version 1.60. ICES Cooperative
Research Report No. 278.

Nedelec, S., Ainslie, M., Andersson, M., Sei-Him, C., Halvorsen, M., Linné, M., Martin, B., et al. 2021.
Best Practice Guide for Underwater Particle Motion Measurement for Biological Applications.
Technical Report by the University of Exeter for the IOGP Marine Sound and Life Joint Industry
Programme. http://dx.doi.org/10.25607/OBP-1726.

Sawada, K., and Furusawa, M. 1993. Precision Calibration of Echo Sounder by Integration of
Standard Sphere Echoes. Journal of the Acoustical Society of Japan, 14: 243–249.

Soule, M., Barange, M., Solli, H., and Hampton, I. 1997. Performance of a new phase algorithm for
discriminating single and overlapping echoes in a split–beam echosounder. ICES Journal of Marine

81

http://dx.doi.org/10.25607/OBP-1726

Science, 54: 934–938.

The HDF Group. 2017. Hierarchical Data Format, Version 5. http://www.hdfgroup.org/HDF5.

Triton. 2013. Triton Imaging, Inc. eXtended Triton Format (XTF) Revision 35.

UCAR. 2014. UDUNITS. http://www.unidata.ucar.edu/software/udunits.

Unidata. 2017. Network Common Data Form (netCDF) Version 4. UCAR/Unidata.

82

http://www.hdfgroup.org/HDF5
http://www.unidata.ucar.edu/software/udunits

Annex 1: Working with netCDF4 files
NetCDF4 files are not commonly used for fisheries acoustics data. To facilitate the use of such files,
this section provides simple examples of how to access and use SONAR-netCDF4 files in commonly
used programming languages, namely Python, R, and Matlab.

Python example

Import packages needed to read and view data from netcdf4
from netCDF4 import Dataset
import numpy as np
import matplotlib.pyplot as plt

Name of the netcdf file
filename = 'SU90-D20171107-T195023.nc'

Open the file
dataset = Dataset(filename)

Open the group where the backscatter data is located
SonarGr = dataset.groups['Sonar'].groups['Beam_group2']

Get the backscatter data from the 10th ping and and 31st beam
back_r = SonarGr.variables['backscatter_r'][9,30]
back_i = SonarGr.variables['backscatter_i'][9,30]

Close dataset
dataset.close()

Compute the power
power = abs(np.vectorize(complex)(back_r,back_i))**2

Plot the power of beam
plt.figure(1)
plt.clf()
plt.plot(10*np.log10(power))
plt.xlabel('Sample number')
plt.ylabel('Amplitude [dB]')

83

R example

library(h5)
SU90_nc <- PATH_TO_SONAR_NETCDF4_FILE

The h5 package is able to read the example file:
data <- h5file(SU90_nc)

Show the contents:
data

List the dimensions of the data sets:
ds <- list.datasets(data)
dims <- lapply(ds, function(x) openDataSet(data, x)@dim)
names(dims) <- ds
dims

Note that the backscatter data are stored as variable
length datatype, so the dimensions in 'dims' does not
reflect to the full size of the backscatter data.
In this particular file the length of all beams and all
pings of both Beam_group1 and Beam_group2 are identical:

bs_r1_name <- "/Sonar/Beam_group2/backscatter_r"
bs_i1_name <- "/Sonar/Beam_group2/backscatter_i"

Save the real part and set dimension to
[length of beams, number of beams, number of pings]:
backscatter1 <- complex(
real=unlist(data[bs_r1_name][10,31]),
imaginary=unlist(data[bs_i1_name][10,31]))
power <- abs(backscatter1)^2

Plot the first and second beam of the third ping:
plot(10*log10(power), type="l",
ylab="Power", xlab="Sample number")

Close the file:
h5close(data)

84

Matlab example

% Example Matlab script to load a SONAR-netCDF4 file using the
% high-level HDF5 functions.

% File to read
file = 'SU90-D20171107-T195023.nc';

% Ping and beam to read
pingNo = 10;
beamNo = 31;

% Read the selected ping/beam from the file
amp_r = h5read(file, '/Sonar/Beam_group2/backscatter_r', [beamNo pingNo], [1 1]);
amp_i = h5read(file, '/Sonar/Beam_group2/backscatter_i', [beamNo pingNo], [1 1]);

% Calculate the power values for the ping.
power = abs(complex(cell2mat(amp_r), cell2mat(amp_i))).^2;

% Plot the power
plot(10*log10(power))
xlabel('Sample number')
ylabel('Power (dB)')

85

	The SONAR-netCDF4 convention for sonar data, version 2.0
	Table of Contents
	Colophon
	Foreword
	Chapter 1. Introduction
	1.1. Background
	1.2. Versioning

	Chapter 2. Use of the SONAR-netCDF4 convention in echo-integration processing
	2.1. Typical processing steps and the associated data models
	2.1.1. Noise removal
	2.1.2. Seabed detection
	2.1.3. Labeling
	2.1.4. Machine learning
	2.1.5. Integrated backscatter

	Chapter 3. The SONAR-netCDF4 convention
	3.1. Introduction
	3.2. Hierarchical structure
	3.3. Obligations and missing data
	3.4. Metadata and authorities
	3.5. Units
	3.5.1. Time units

	3.6. Datatypes
	3.7. Vocabularies
	3.8. File-naming convention
	3.9. Groups
	3.9.1. Annotation group
	3.9.2. Environment group
	3.9.3. Platform group
	3.9.4. Provenance group
	3.9.5. Sonar group
	Beam group

	3.9.6. Proposed Single Target additions
	3.9.7. Proposed ADCP additions
	3.9.8. Gridded group
	3.9.9. Interpretation
	3.9.10. Vendor specific group

	Chapter 4. Conversion equations
	4.1. Type 1
	4.2. Type 2
	4.3. Type 3
	4.4. Type 4
	4.5. Type 5
	4.6. Type 6

	Chapter 5. Coordinate systems
	5.1. Coordinate System Transforms
	5.2. Split-aperture coordinates
	5.3. Equations for positioning echoes in a Surface coordinate system
	5.3.1. Beams are stabilized by the sonar and beam pointing angles are relative to SCS
	5.3.2. Beams are not stabilized by the sonar and beam pointing angles are relative to TCS

	5.4. Equations for positioning echoes in a Geographical Coordinate System

	Chapter 6. Split-aperture beams
	6.1. Angles stored in file
	6.2. Angles not stored in file
	6.2.1. Four quadrants (type A)
	6.2.2. Three or four sub-beams (type B and C)

	Chapter 7. Revision history
	7.1. Significant changes from version 1 to version 2
	7.2. Changes within a document version

	Chapter 8. Acknowledgements
	Chapter 9. References
	Annex 1: Working with netCDF4 files

