
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

How To Simulate It
A Tutorial on the Simulation Proof Technique

Kurt Pan

Fudan University

June 8, 2021

Kurt Pan How To Simulate It June 8, 2021 1 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

1 Semantic Security as Simulation

2 Simulation for Semi-Honest Adversaries
Oblivious Transfer for Semi-Honest Adversaries

3 Simulating the View of Malicious Adversaries – Zero Knowledge
Defining Zero Knowledge
Commitment Schemes
Non-Constant Round Zero Knowledge
Constant-Round Zero-Knowledge
Honest-Verifier Zero Knowledge

Kurt Pan How To Simulate It June 8, 2021 2 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

4 Defining Security for Malicious Adversaries
Modular Sequential Composition

5 Determining Output – Coin Tossing
Coin Tossing a Single Bit
Securely Tossing Many Coins and the Hybrid Model

6 Extracting Inputs – Oblivious Transfer

7 The Common Reference String Model – Oblivious Transfer

8 Advanced Topics
Composition and Universal Composability
Proofs in the Random Oracle Model
Adaptive Security

Kurt Pan How To Simulate It June 8, 2021 3 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Kurt Pan How To Simulate It June 8, 2021 4 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Kurt Pan How To Simulate It June 8, 2021 5 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Section 1

Semantic Security as Simulation

Kurt Pan How To Simulate It June 8, 2021 6 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Semantic Security as Simulation

Definition (Semantically Secure)
A private-key encryption scheme (G,E,D) is semantically secure (in the
private-key model) if for every non-uniform probabilistic-polynomial time
algorithm A there exists a non-uniform probabilistic-polynomial time
algorithm A′ such that for every probability ensemble {Xn}n∈N with
|Xn| ≤ poly(n), every pair of polynomially-bounded functions f, h :
{0, 1}∗ → {0, 1}∗, every positive polynomial p(·) and all sufficiently large
n :

Prk←G(1n)

[
A
(

1n,Ek (Xn) , 1|Xn|, h (1n,Xn)
)
= f (1n,Xn)

]
< Pr

[
A′

(
1n, 1|Xn|, h (1n,Xn)

)
= f (1n,Xn)

]
+

1
p(n)

(The probability in the above terms is taken over Xn as well as over the
internal coin tosses of the algorithms G,E and A or A′.)

Kurt Pan How To Simulate It June 8, 2021 6 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Semantic Security as Simulation

Simulation(ideal/real world comparison)
Simulation is a way of comparing what happens in the “real world” to
what happens in an “ideal world” where the primitive in question is secure
by definition.

Simulator A′ : Upon input 1n, 1|Xn|, h = h (1n,Xn), algorithm A′ works as
follows

1 A′ runs the key generation algorithm G (1n) in order to receive k .
2 A′ computes c = Ek

(
0|Xn|

)
as an encryption of ”garbage” .

3 A′ runs A
(
1n, c, 1|Xn|, h

)
and outputs whatever A outputs.

Simulation-based proofs
The simulator somehow simulates an execution for the adversary while
handing it “garbage” that looks indistinguishable. Then, the proof
proceeds by showing that the simulation is “good”, or else the given
assumption can be broken.

Kurt Pan How To Simulate It June 8, 2021 7 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Section 2

Simulation for Semi-Honest Adversaries

Kurt Pan How To Simulate It June 8, 2021 8 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Defining Security for Semi-Honest Adversaries

Let f = (f1, f2) be a probabilistic polynomial-time functionality and let
π be a two-party protocol for computing f.
The view of the i th party (i ∈ {1, 2}) during an execution of π on
(x, y) and security parameter n is denoted by viewπ

i (x, y, n) and equals(
w, ri;mi

1, . . . ,mi
t
)
, where w ∈ {x, y} (its input depending on the

value of i), ri equals the contents of the i th party’s internal random
tape, and mi

j represents the j th message that it received.
The output of the i th party during an execution of π on (x, y) and
security parameter n is denoted by outputπi (x, y, n) and can be
computed from its own view of the execution. We denote the joint
output of both parties by
outputπ(x, y, n) = (outputπ1 (x, y, n), output π

2 (x, y, n)).

Kurt Pan How To Simulate It June 8, 2021 8 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Defining Security for Semi-Honest Adversaries

Definition (π securely computes f in the presence of static
semi-honest adversaries)
if there exist probabilistic polynomial-time algorithms S1 and S2 such that

{(S1 (1n, x, f1(x, y)) , f(x, y))}x,y,n
c≡ {(viewπ

1 (x, y, n), outputπ(x, y, n))}x,y,n
{(S2 (1n, y, f2(x, y)) , f(x, y))}x,y,n

c
= {(viewπ

2 (x, y, n), outputπ(x, y, n))}x,y,n

where x, y ∈ {0, 1}∗ such that |x| = |y|, and n ∈ N.

Kurt Pan How To Simulate It June 8, 2021 9 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Defining Security for Semi-Honest Adversaries

Definition (π securely computes f in the presence of static
semi-honest adversaries(f is deterministic))

Correctness, meaning that the output of the parties is correct, i.e.
there exists a negligible function µ such that for every x, y ∈ {0, 1}∗
and every n

Pr [outputπ(x, y, n) ̸= f(x, y)] ≤ µ(n),

Privacy, meaning that the view of each party can be (separately)
simulated,i.e. there exist probabilistic-polynomial time S1 and S2 such
that

{S1 (1n, x, f1(x, y))}x,y∈{0,1}∗;n∈N
c≡ {viewπ

1 (x, y, n)}x,y∈{0,1}∗;n∈N
{S2 (1n, y, f2(x, y))}x,y∈{0,1}∗;n∈N

c≡ {viewπ
2 (x, y, n)}x,y∈{0,1}∗;n∈N

Kurt Pan How To Simulate It June 8, 2021 10 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Oblivious Transfer for Semi-Honest Adversaries

Definition (Bit Oblivious Transfer Functionality)

f ((b0, b1) , σ) = (λ, bσ) , where b0, b1, σ ∈ {0, 1}

P1 has a pair of input bits (b0, b1) and P2 has a choice bit σ.
P1 receives no output (denoted by the empty string λ), and in
particular learns nothing about σ.
P2 receives the bit of its choice bσ and learns nothing about the other
bit b1−σ.

Kurt Pan How To Simulate It June 8, 2021 11 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Definition (Enhanced Trapdoor Permutations)
A collection of trapdoor permutations is a collection of functions {fα}α
accompanied by four probabilistic-polynomial time algorithms I,S,F,F−1

such that:
I (1n) selects a random n -bit index α of a permutation fα along with
a corresponding trapdoor τ . Denote by I1 (1n) the α -part of the
output.
S(α) samples an (almost uniform) element in the domain
(equivalently, the range) of fα. We denote by S(α; r) the output of
S(α) with random tape r; for simplicity we assume that r ∈ {0, 1}n

F(α, x) = fα(x), for α in the range of I1 and x in the range of S(α).
F−1(τ, y) = f−1

α (y) for y in the range of fα and (α, τ) in the range of I.
for every non-uniform probabilistic polynomial time adversary A there
exists a negligible function µ such that for every n,

Pr
[
A (1n, α, r) = f−1

α (S(α; r))
]
≤ µ(n)

where α← I1 (1n) and r ∈R {0, 1}n is random.
Kurt Pan How To Simulate It June 8, 2021 12 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Definition (Hard-core Predicate)
A hard-core predicate B of a family of enhanced trapdoor permutations(
I,S,F,F−1) if for every non-uniform probabilistic-polynomial time

adversary A there exists a negligible function µ such that for every n,

Pr
[
A (1n, α, r) = B

(
α, f−1

α (S(α; r))
)]
≤ 1

2 + µ(n)

Kurt Pan How To Simulate It June 8, 2021 13 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Oblivious Transfer for Semi-Honest Adversaries

Protocol
1 P1 runs I (1n) to obtain a permutation-trapdoor pair (α, τ).P1 sends
α to P2.

2 P2 runs S(α) twice; denote the first value obtained by xσ and the
second by y1−σ. Then, P2 computes yσ = F (α, xσ) = fα (xσ), and
sends y0, y1 to P1.

3 P1 uses the trapdoor τ and computes x0 = F−1 (α, y0) = f−1
α (y0) and

x1 = F−1 (α, y1) = f−1
α (y1) . Then, it computes β0 = B (α, x0)⊕ b0

and β1 = B (α, x1)⊕ b1, where B is a hard-core predicate of f. Finally,
P1 sends (β0, β1) to P2.

4 P2 computes bσ = B (α, xσ)⊕ βσ and outputs the result.

Kurt Pan How To Simulate It June 8, 2021 14 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Oblivious Transfer for Semi-Honest Adversaries

Theorem
Assume that

(
I,S,F,F−1) constitutes a family of enhanced trapdoor

permutations with a hard-core predicate B. Then, Protocol above securely
computes the functionality f ((b0, b1) , σ) = (λ, bσ) in the presence of
static semi-honest adversaries.

Proof.
P1 is corrupted
S1 is given (b0, b1) and 1n :

1 S1 chooses a uniformly distributed random tape r for P1
2 S1 computes (α, τ)← I (1n; r), using the r from above.
3 S1 runs S(α) twice with independent randomness to sample values

y0, y1.
4 S1 outputs ((b0, b1) , r; (y0, y1)); the pair (y0, y1) simulates the

incoming message from P2 to P1 in the protocol.
Kurt Pan How To Simulate It June 8, 2021 15 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Claim
{(F (α, x0) , y1)}

s≡ {(y0, y1)}
s≡ {(y0,F (α, x1))}

{S1 (1n, (b0, b1))}
s≡ {viewπ

1 ((b0, b1) , σ)}

Kurt Pan How To Simulate It June 8, 2021 16 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

P2 is corrupted

Proof.
Simulator S2 receives for input 1n plus (σ, bσ):

1 S2 chooses a uniform random tape for P2. Since P2 ’s randomness is
for running S(α) twice, we denote the random tape by r0, r1.

2 S2 runs I (1n) and obtains (α, τ).
3 S2 computes xσ = S (α; rσ) and y1−σ = S (α; r1−σ), and sets

x1−σ = F−1 (τ, y1−σ).
4 S2 sets βσ = B (α, xσ)⊕ bσ, where bσ is P2 ’s output received by S2.
5 S2 sets β1−σ = B (α, x1−σ).
6 S2 outputs (σ, r0, r1;α, (β0, β1)).

Kurt Pan How To Simulate It June 8, 2021 17 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Claim
When b1−σ = 0, for every σ, bσ ∈ {0, 1} and every n:

{S2 (1n, σ, bσ)} ≡ {viewπ
2 ((b0, b1) , σ)}

Claim
When b1−σ = 1

{(σ, r0, r1;α, (B (α, xσ)⊕ bσ,B (α, x1−σ)))}
c
=

{(σ, r0, r1;α, (B (α, xσ)⊕ bσ,B (α, x1−σ)⊕ 1))}

Kurt Pan How To Simulate It June 8, 2021 18 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Section 3

Simulating the View of Malicious Adversaries – Zero
Knowledge

Kurt Pan How To Simulate It June 8, 2021 19 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Defining Zero Knowledge

Definition (IP)
An interactive proof system for a language L involves a prover P and a
verifier V, where upon common input x, the prover P attempts to convince
V that x ∈ L. The prover is often given some private auxiliary-input that
”helps” it to prove the statement in question to V.

1 Completeness: when honest P and V interact on common input
x ∈ L, then V is convinced of the correctness of the statement that
x ∈ L (except with at most negligible probability).

2 Soundness: when V interacts with any (cheating) prover P∗ on
common input x /∈ L, then V will be convinced with at most negligible
probability. (Thus V cannot be tricked into accepting a false
statement.)

Kurt Pan How To Simulate It June 8, 2021 19 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Defining Zero Knowledge

Definition (bb-cZK)
Let (P,V) be an interactive proof system for an NP -language L, and let
RL be the associated NP -relation. We say that (P,V) is black-box
computational zero knowledge if there exists a probabilistic-polynomial
time oracle machine S such that for every non-uniform probabilistic
polynomial time algorithm V∗ it holds that:

{outputV∗ (P(x,w),V∗(x, z))}(x,w)∈RL,z∈{0,1}∗
c≡
{
SV∗(x,z,r,·)(x)

}
x∈L,z∈{0,1}∗

where r is uniformly distributed, and where V∗(x, z, r, ·) denotes the
next-message function of the interactive machine V∗ when the common
input x, auxiliary input z and random-tape r are fixed (i.e., the next
message function of V∗ receives a message history m⃗ and outputs
V∗(x, z, r, m⃗)).

Kurt Pan How To Simulate It June 8, 2021 20 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Commitment Schemes

Definition
We denote by Com a non-interactive perfectly binding commitment
scheme. Let c = Comn(x; r) denote a commitment to x using random
string r and with security parameter n. We will typically omit the explicit
reference to n and will write c = Com(x; r).
Let Com(x) denote a commitment to x using uniform randomness.
Let decom(c) denote the decommitment value of c; to be specific, if
c = Com(x; r) then decom(c) = (x, r).

Computational Hiding commitments to different strings are
computationally indistinguishable. For bit commitments, C0

c≡ C1
where Cb = {Com (b;Un)}n∈N is the ensemble of commitments to bit
b.
Perfect Binding the sets of all commitments to different values are
disjoint; that is, for all x1 ̸= x2 it holds that Cx1 ∩ Cx2 = ∅ where
Cx1 = {c | ∃r : c = Com (x1; r)} and Cx2 = {c | ∃r : c = Com (x2; r)}.

Kurt Pan How To Simulate It June 8, 2021 21 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subsection 3

Non-Constant Round Zero Knowledge

Kurt Pan How To Simulate It June 8, 2021 22 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Zero-Knowledge Proof for 3-Coloring

Common input: a graph G = (V,E) with V = {v1, . . . , vn}
Auxiliary input for the prover: a coloring of the graph
ψ : V→ {1, 2, 3} such that for every (vi, vj) ∈ E it holds that
ψ (vi) ̸= ψ (vj)

The proof system: Repeat the following n · |E| times (using
independent randomness each time):

1 The prover selects a random permutation π over {1, 2, 3}, defines
ϕ(v) = π(ψ(v)) for all v ∈ V, and computes ci = Com (ϕ (vi)) for all i.
The prover sends the verifier the commitments (c1, . . . , cn)

2 The verifier chooses a random edge e ∈R E and sends e to the prover.
3 Let e = (vi, vj) be the edge received by the prover. The prover sends

decom (ci) , decom (cj) to the verifier.
4 Let ϕ (vi) and ϕ (vj) denote the respective decommitment values from

ci and cj. The verifier checks that the decommitments are valid, that
ϕ (vi) , ϕ (vj) ∈ {1, 2, 3}, and that ϕ (vi) ̸= ϕ (vj). If not, it halts and
outputs 0 .

If the checks pass in all iterations, then the verifier outputs 1.
Kurt Pan How To Simulate It June 8, 2021 22 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Soundness By repeating the proof n · |E| times (where n is the
number of nodes in the graph), the prover can get away with cheating
with probability at most

(
1− 1

|E|

)n·|E|
< e−n which is negligible.

Zero Knowledge In each execution a new random coloring of the
edges is committed to by the prover, and the verifier only sees the
colors of a single edge. Thus, the verifier simply sees two (different)
random colors for the endpoints of the edges each time. This clearly
reveals nothing about the coloring of the graph. We must prove this
intuition by constructing a simulator.

Kurt Pan How To Simulate It June 8, 2021 23 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Rewinding

game save points
virtual machine snapshot

Kurt Pan How To Simulate It June 8, 2021 24 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem
Let Com be a perfectly-binding commitment scheme with security for
non-uniform adversaries. Then, the 3-coloring protocol is bb-cZK.

Proof.
Simulator S is given a graph G = (V,E) with V = {v1, . . . , vn} and oracle
access to some probabilistic-polynomial time V∗(x, z, r, ·), and works as
follows:

1 S initializes the message history transcript m⃗ to be the empty string λ.
2 Repeat n · |E| times:

a S sets j = 1.
b S chooses a random edge (vk, vℓ) ∈R E and chooses two random

different colors for vk and vℓ. Formally, S chooses ϕ (vk) ∈R {1, 2, 3}
and ϕ (vℓ) ∈R {1, 2, 3}\ {ϕ (vk)}. For all other vi ∈ V\ {vk, vℓ} ,S sets
ϕ (vi) = 0.

c For every i = 1, . . . , n,S computes ci = Com (ϕ (vi)).

Kurt Pan How To Simulate It June 8, 2021 25 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
2 d S ”sends” the vector (c1, . . . , cn) to V∗. Formally, S queries m⃗

concatenated with this vector to its oracle (indeed S does not interact
with V∗ and so cannot actually ”send” it any message). Let e ∈ E be
the reply back from the oracle.

d If e = (vk, vℓ), then S completes this iteration by concatenating the
commitments (c1, . . . , cn) and (decom (ck) , decom (cℓ)) to m⃗. Formally,
S updates the history string
m⃗← (m⃗, (c1, . . . , cn) , (decom (ck) , decom (cℓ)))

d If e ̸= (vk, vℓ) then S sets j← j + 1. If j = n · |E|, then S outputs a fail
symbol ⊥. Else (when j ̸= n · |E|),S returns to Step 2b (i.e., S tries
again for this i). This return to Step 2b is the rewinding of V∗ by the
simulator.

3 S outputs whatever V∗ outputs on the final transcript m⃗.

Kurt Pan How To Simulate It June 8, 2021 26 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

S runs in polynomial-time: each repetition runs for at most n · |E|
iterations, and there are n · |E| repetitions.
To prove that S generates a transcript that is indistinguishable
from a real transcript, i.e.

{ outputV∗ (P(G, ψ),V∗(G, z))} c≡
{
SV∗(G,z,r,·)(G)

}
we need to prove a reduction to the security of the commitment
scheme.
Alternative simulator S ′ who is given a valid coloring ψ as auxiliary
input.
S ′ works in exactly the same way as S (choosing e at random,
rewinding, and so on) except that in every iteration it chooses a
random permutation π over {1, 2, 3}, sets ϕ(v) = π(ψ(v)), and
computes ci = Com (ϕ (vi)) for all i, exactly like the real prover.

Kurt Pan How To Simulate It June 8, 2021 27 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Claim 1

{outputV∗ (P(G, ψ),V∗(G, z))} ≡
{
S ′V∗(G,z,r,)(G, ψ) | S ′V∗(G,z,r,·)(G, ψ) ̸=⊥

}
Claim 2

{
S ′V∗(G,z,r,·)(G, ψ) | S ′V∗(G,z,r,·)(G, ψ) ̸=⊥

} c≡
{
S ′V∗(G,z,r,·)(G, ψ)

}
Claim 3 {

S ′V∗(G,z,r,·)(G, ψ)
} c≡

{
SV∗(G,z,r,·)(G)

}

Kurt Pan How To Simulate It June 8, 2021 28 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
Assume by contradiction, that there exists a probabilistic-polynomial
time verifier V∗, a probabilisticpolynomial time distinguisher D, and a
polynomial p(·) such that for an infinite sequence (G, ψ, z) where
(G, ψ) ∈ R and z ∈ {0, 1}∗,

|Pr
[
D
(

G, ψ, z,S ′V∗(G,z,r,·)(G, ψ)
)
= 1

]
−Pr

[
D
(

G, ψ, z,SV∗(G,z,r,·)(G)
)
= 1

]
| ≥ 1

p(n)
We construct a adversary A for the commitment experiment
LR-commit. A receives (G, ψ, z) on its advice tape.

Kurt Pan How To Simulate It June 8, 2021 29 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 A initializes V∗ with input graph G, auxiliary input z and a uniform
random tape r

2 A runs the instructions of S ′ with input (G, ψ) and oracle V∗(x, z, r; ·),
with some changes. For every iteration of the simulation:

a For the randomly chosen edge e = (vk, vℓ), adversary A generates
commitments ck = Com (ϕ (vk)) and cℓ = Com (ϕ (vℓ)) by itself.

b For all other i (i.e., for all i ∈ {1, . . . , n}\{k, ℓ}), adversary A queries
its LR-oracle with the pair (0, ϕ(i)). Denote by ci the commitment
received back.

A simulates S ′ querying V∗ with the commitments (c1, . . . , cn) as a
result of the above. Observe that A can decommit to vk, vℓ as needed
by S ′, since it computed the commitments itself.

3 When S ′ concludes, then A invokes D on the output generated by S ′,
and outputs whatever D outputs.

Kurt Pan How To Simulate It June 8, 2021 30 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.

Pr
[
LR-commitCom ,A (1n) = 1 | b = 1

]
= Pr

[
D
(

G, z,S ′V∗(G,z,r,·)(G, ψ)
)
= 1

]

Pr
[
LR-commitCom ,A (1n) = 1 | b = 0

]
= Pr

[
D
(

G, z,SV∗(G,z,r,·)(G)
)
= 0

]

Pr [LR-commitCom,A (1n) = 1]
= 1

2 Pr
[
LR-commitCom,A (1n) = 1 | b = 1

]
+1

2 Pr [LR-commitCom,A (1n) = 1 | b = 0]
= 1

2 Pr
[
D
(
G, z,S ′V∗(G,z,r,·)(G, ψ)

)
= 1

]
+ 1

2 Pr
[
D
(
G, z,SV∗(G,z,r,)(G)

)
= 0

]
= 1

2 Pr
[
D
(
G, z,S ′V∗(G,z,r,·)(G, ψ)

)
= 1

]
+1

2
(
1− Pr

[
D
(
G, z,SV∗(G,z,r,·)(G)

)
= 1

])
= 1

2+
1
2
(
Pr

[
D
(
G, z,S ′V∗(G,z,r,·)(G, ψ)

)
= 1

]
− Pr

[
D
(
G, z,SV∗(G,z,r,)(G)

)
= 1

])
≥ 1

2 + 1
2p(n) .
Kurt Pan How To Simulate It June 8, 2021 31 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discussion on the proof technique

Two differences between S and a real prover: (a) the flow of S that
involves choosing e and rewinding, and (b) the commitments that are
incorrectly generated.
This technique is often used in simulation-based proofs, and in some
cases there are series of simulators that bridge the differences
between the real execution and the simulation. This is similar to
sequences of hybrids in game-based proofs, with the only
difference being that the sequence here is from the simulation to the
real execution (or vice versa).

Kurt Pan How To Simulate It June 8, 2021 32 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subsection 4

Constant-Round Zero-Knowledge

Kurt Pan How To Simulate It June 8, 2021 33 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Kurt Pan How To Simulate It June 8, 2021 33 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Goldreich-Kahan Proof System
1 The prover sends the first message of a (two-round) perfectly-hiding

commitment scheme, denoted Comh.

2 The verifier chooses N def
= n · |E| random edges e1, . . . , eN ∈R E. Let

q = (e1, . . . , eN) be the query string; the verifier commits to q using
the perfectly-hiding commitment Comh

3 The prover prepares the first message in N parallel executions of the
basic three-round proof system (i.e., commitments to N independent
random colorings of the graph), and sends commitments to all using
the perfectly-binding commitment scheme Com.

4 The verifier decommits to the string q.
5 If the verifier’s decommitment is invalid, then the prover aborts.

Otherwise, the prover sends the appropriate decommitments in every
execution. Specifically, if ei is the edge in the i th execution, then the
prover decommits to the nodes of that edge in the i th set of
commitments to colorings.

6 The verifier outputs 1 if and only if all checks pass.
Kurt Pan How To Simulate It June 8, 2021 34 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem
Let Comh and Com be perfectly-hiding and perfectly-binding commitment
schemes, respectively. Then, GK Protocol above is bb-cZK with an
expected polynomial-time simulator.

Proof.
1 S hands V∗ the first message of Comh .
2 S receives from V∗ its perfectly-hiding commitment c to some query

string q = (e1, . . . , eN), where N = n · |E|.
3 S generates N vectors of n commitments to 0 , hands them to V∗,

and receives back its reply.
4 If V∗ aborts by not replying with a valid decommitment to c (and the

decommitment is to a vector of N edges), then S aborts and outputs
whatever V∗ outputs. Otherwise, let q = (e1, . . . , eN) be the
decommitted value. S proceeds to the next step.

5 Rewinding phase −S repeatedly rewinds V∗ back to the point where it
receives the prover commitments, until it decommits to q from above:

Kurt Pan How To Simulate It June 8, 2021 35 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
5 1 S generates N vectors of commitments c⃗1, . . . , c⃗N, as follows. Let

ei = (vj, vk) in q. Then, the j th and k th commitments in c⃗i are to
random distinct colors in {1, 2, 3} and all other commitments are to 0.
Simulator S hands all vectors to V∗, and receives back its reply.

2 If V∗ does not generate a valid decommitment, then S returns to the
previous step (using fresh randomness).

3 If V∗ generates a valid decommitment to some q′ ̸= q, then S outputs
ambiguous and halts.

4 Otherwise, V∗ exits the loop and proceeds to the next step.
6 S completes the proof by handing V∗ decommitments to the

appropriate nodes in all of c⃗1, . . . , c⃗N, and outputs whatever V∗
outputs.

Kurt Pan How To Simulate It June 8, 2021 36 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Simulator may not run in expected polynomial-time
The probability that the verifier decommits correctly when receiving
the first prover commitments to pure garbage is not necessarily the
same as the probability that it decommits correctly when receiving the
simulator-generated commitments.
If the verifier was all powerful, it could break open the commitments
and purposefully make the simulation fail by decommitting when it
receives pure garbage (or fully valid commitments) and not
decommitting when it receives commitments that can be opened only
to its query string.
we can only argue that this doesn’t happen by a reduction to the
commitments, and this also means that there may be a negligible
difference. Thus, we actually have that the expected running time of
the simulator is

poly(n) ·
(

1− ϵ(n) + ϵ(n) · 1
ϵ(n)− µ(n)

)
let ϵ denote the probability that V∗ does not abort

Kurt Pan How To Simulate It June 8, 2021 37 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Kurt Pan How To Simulate It June 8, 2021 38 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

µ(n) = 2−n/2 − 2−n and ϵ(n) = µ(n) + 2−n = 2−n/2. Then,

ϵ(n)
ϵ(n)− µ(n) =

2−n/2

2−n/2 −
(
2−n/2 − 2−n) =

2−n/2

2−n = 2n/2

simulation does not run in expected polynomial-time.
This is solved by ensuring that the simulator S never runs ”too long”.
S runs the rewinding phase in Step 5 of the simulation up to n times.
Each time, S limits the number of rewinding attempts in the
rewinding phase to n/ϵ̃ iterations.

Kurt Pan How To Simulate It June 8, 2021 39 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

S first estimates the value of ϵ(n) which is the probability that V∗ does
not abort given garbage commitments. This is done by repeating Step 3 of
the simulation (sending fresh random commitments to all zeroes) until
m = O(n) successful decommits occurs (for a polynomial m(n); to be
exact m = 12n suffices), where a successful decommit is where V∗
decommits to q, the string it first decommitted to.
We remark that as in the original strategy, if V∗ correctly decommits to a
different q′ ̸= q then S outputs ambiguous. Then, an estimate ϵ̃ of ϵ is
taken to be m/T, where T is the overall number of attempts until m
successful decommits occurred. This suffices to ensure that the probability
that ϵ̃ is not within a constant factor of ϵ(n) is at most 2−n.

Claim
Simulator S runs in expected-time that is polynomial in n

poly(n) · ϵ(n) ·
(

12n
ϵ(n) + n · n

ϵ̃

)
= poly(n) · ϵ(n)

ϵ̃
= poly(n)

Kurt Pan How To Simulate It June 8, 2021 40 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Claim
The probability that S outputs fail is negligible in n

Claim
The probability that S outputs ambiguous is negligible in n

Claim
The output distribution generated by S is computationally
indistinguishable from the output of V∗ in a real proof with an honest
prover.

Kurt Pan How To Simulate It June 8, 2021 41 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subsection 5

Honest-Verifier Zero Knowledge

Kurt Pan How To Simulate It June 8, 2021 42 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A proof system is honest-verifier zero knowledge if the zero-knowledge
property holds for semi-honest verifiers.
Σ-protocol / Schnorr Signature
Consider the basic 3-coloring protocol described run n · |E| times in
parallel. Specifically, the prover generates n · |E| sets of commitments
to random colorings and sends them to the verifier. The verifier
chooses q = (e1, . . . , eN) at random and sends q to the prover.
Finally, the prover decommits as in the protocol.

Theorem
If Com is a perfectly-binding commitment scheme, then the parallel
3-coloring protocol is honest-verifier zero knowledge.

Kurt Pan How To Simulate It June 8, 2021 42 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
S:

1 Let N = n · |E|. Then, for i = 1, . . . ,N,S chooses a random edge
ei ∈ E, and sets q = (e1, . . . , eN). Let rq be the random coin tosses
that define q.

2 For every i = 1, . . . ,N :
a Let ei = (vj, vk).
b S chooses random ϕ (vj) ∈R {1, 2, 3} and ϕ (vk) ∈R {1, 2, 3}\ {ϕ (vj)}.

For all other vℓ ∈ V\ {vj, vk} ,S sets ϕ (vℓ) = 0
c S sets the commitment vector

c⃗i =
(
c1

i , . . . , cn
i
)
= (Com (ϕ (v1)) , . . . ,Com (ϕ (vn))).

d S sets the decommitment vector d⃗i =
(
decom

(
cj

i

)
, decom

(
ck

i
))

Kurt Pan How To Simulate It June 8, 2021 43 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Section 4

Defining Security for Malicious Adversaries

Kurt Pan How To Simulate It June 8, 2021 44 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Execution in the ideal model

Definition (Ideal Execution)
Denote the participating parties by P1 and P2 and let i ∈ {1, 2} denote the
index of the corrupted party, controlled by an adversary A.
An ideal execution for a function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗
proceeds as follows:

Inputs: Let x denote the input of party P1, and let y denote the input
of party P2. The adversary A also has an auxiliary input denoted by
z. All parties are initialized with the same value 1n on their security
parameter tape (including the trusted party).
Send inputs to trusted party: The honest party Pj sends its
prescribed input to the trusted party.
The corrupted party Pi controlled by A may either abort (by replacing
the input with a special aborti message), send its prescribed input, or
send some other input of the same length to the trusted party.
Denote the pair of inputs sent to the trusted party by (x′, y′) .

Kurt Pan How To Simulate It June 8, 2021 44 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Definition
Early abort option: If the trusted party receives an input of the form
aborti for some i ∈ {1, 2}, it sends aborti to the honest party Pj and
the ideal execution terminates. Otherwise, the execution proceeds to
the next step.
Trusted party sends output to adversary: At this point the trusted
party computes f1 (x′, y′) and f2 (x′, y′) and sends fi (x′, y′) to party Pi .
Adversary instructs trusted party to continue or halt: A sends
either continue or aborti to the trusted party. If it sends continue,
the trusted party sends fj (x′, y′) to the honest party Pj. If A sends
aborti, the trusted party sends aborti to party Pj.
Outputs: The honest party always outputs the output value it
obtained from the trusted party. The corrupted party outputs
nothing. The adversary A outputs any arbitrary function of the
prescribed input of the corrupted party, the auxiliary input z, and the
value fi (x′, y′) obtained from the trusted party.

Kurt Pan How To Simulate It June 8, 2021 45 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Execution in the ideal model

Definition
The ideal execution of f on inputs (x, y), auxiliary input z to A and security
parameter n, denoted by IDEALf,A(z),i(x, y, n), is defined as the output pair
of the honest party and the adversary A from the above ideal execution.

In the case of no honest majority (and in particular in the two-party
case), it is in general impossible to achieve guaranteed output
delivery and fairness.
This ”weakness” is therefore incorporated into the ideal model by
allowing the adversary in an ideal execution to abort the execution or
obtain output without the honest party obtaining its output.

Kurt Pan How To Simulate It June 8, 2021 46 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Execution in the real model

Definition
let π be a two-party protocol for computing f, meaning that when P1 and
P2 are both honest, then the parties output f1(x, y) and f2(x, y),
respectively, after an execution of π with respective inputs x and y.
The real execution of π on inputs (x, y), auxiliary input z to A and security
parameter n, denoted by REALπ,A(z),i(x, y, n), is defined as the output pair
of the honest party and the adversary A from the real execution of π

there exists no trusted third party
the adversary A sends all messages in place of the corrupted party,
and may follow an arbitrary polynomial-time strategy.
the honest party follows the instructions of π.
a simple network setting where the protocol proceeds in rounds,
where in each round one party sends a message to the other party.

Kurt Pan How To Simulate It June 8, 2021 47 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Defining Security for Malicious Adversaries

Definition
Let f be a two-party functionality and let π be a two-party protocol that
computes f. Protocol π is said to securely compute f with abort in the
presence of static malicious adversaries if for every non-uniform
probabilistic polynomial-time adversary A for the real model, there exists a
non-uniform probabilistic polynomial-time adversary S for the ideal model,
such that for every i ∈ {1, 2}{

IDEALf,S(z),i(x, y, n)
}

x,y,z,n
c≡
{
REALπ,A(z),i(x, y, n)

}
x,y,z,n

where x, y ∈ {0, 1}∗ under the constraint that |x| = |y|, z ∈ {0, 1}∗ and
n ∈ N.

a secure protocol (in the real model) emulates the ideal model (in
which a trusted party exists).
adversaries in the ideal model (simulator) are able to simulate
executions of the real-model protocol.

Kurt Pan How To Simulate It June 8, 2021 48 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discussion

Definition implies privacy (meaning that nothing but the output is
learned), corrrectness (meaning that the output is correctly
computed) and more.
Since the IDEAL and REAL distributions must be indistinguishable,
this in particular implies that the output of the adversary in the
IDEAL and REAL executions is indistinguishable. Thus, whatever the
adversary learns in a real execution can be learned in the ideal model.
In the ideal model, the adversary cannot learn anything about the
honest party’s input beyond what is revealed in the output.
Regarding correctness, if the adversary can cause the honest party’s
output to diverge from a correct value in a real execution, then this
will result in a non-negligible difference between the distribution over
the honest party’s output in the real and ideal executions.

Kurt Pan How To Simulate It June 8, 2021 49 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subsection 1

Modular Sequential Composition

Kurt Pan How To Simulate It June 8, 2021 50 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The hybrid model

Parties both interact with each other (as in the real model) and use
trusted help (as in the ideal model).

standard messages : regular messages of π that are sent amongst the
parties
ideal messages: the messages that are sent between parties and the
trusted party.

the parties run a protocol π that contains ”ideal calls” to a trusted
party computing some functionalities f1, . . . , fp(n). These ideal calls
are just instructions to send an input to the trusted party. Upon
receiving the output back from the trusted party, the protocol π
continues.
The protocol π is such that fi is called before fi+1 for every i

Kurt Pan How To Simulate It June 8, 2021 50 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sequential composition – malicious adversaries

Let f1, . . . , fp(n) be probabilistic polynomialtime functionalities and let π be
a two-party hybrid-model protocol that uses ideal calls to a trusted party
computing f1, . . . , fp(n).
The f1, . . . , fp(n) -hybrid execution of π on inputs (x, y), auxiliary input z
to A and security parameter n, denoted HYBRIDf1,...,fp(n)

π,A(z),i (x, y, n) is defined
as the output of the honest party and the adversary A from the hybrid
execution of π with a trusted party computing f1, . . . , fp(n)

Kurt Pan How To Simulate It June 8, 2021 51 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sequential composition – malicious adversaries

Definition (Real protocol πρ1,...,ρp(n))
All standard messages of π are unchanged.
When a party is instructed to send an ideal message α to the trusted party
to compute fj, it begins a real execution of ρj with input α instead. When
this execution of ρj concludes with output y, the party continues with π as
if y were the output received from the trusted party for fj (i.e., as if it were
running in the hybrid model).

Theorem
Let p(n) be a polynomial, let f1, . . . , fp(n) be two-party probabilistic
polynomial-time functionalities and let ρ1, . . . , ρp(n) be protocols such that
each ρi securely computes fi in the presence of malicious adversaries. Let g
be a two-party functionality and let π be a protocol that securely
computes g in the f1, . . . , fp(n) -hybrid model in the presence of malicious
adversaries. Then, πρ1,...,ρp(n) securely computes g in the presence of
malicious adversaries.

Kurt Pan How To Simulate It June 8, 2021 52 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Section 5

Determining Output – Coin Tossing

Subsection 1

Coin Tossing a Single Bit

Kurt Pan How To Simulate It June 8, 2021 53 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Coin Tossing a Single Bit

The protocol by Blum for tossing a single coin securely : The
protocol securely computes the functionality fct(λ, λ) = (U1,U1)
where U1 is a random variable that is uniformly distributed over
{0, 1}.
It is possible for one party to see the output and then abort before the
other receives it (e.g., in the case that it is not a favorable outcome
for that party). Because it is impossible for two parties to toss a coin
fairly so that neither party can cause a premature abort or bias the
outcome
We defined a real model where protocols proceed in rounds and in
each round one message is sent from one party to the other.

Kurt Pan How To Simulate It June 8, 2021 53 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blum’s Coin Tossing of a Single Bit
1 P1 chooses a random b1 ∈ {0, 1} and a random r ∈ {0, 1}n and sends

c = Com (b1; r) to P2.
2 Upon receiving c, party P2 chooses a random b2 ∈ {0, 1} and sends

b2 to P1.
3 Upon receiving b2, party P1 sends (b1, r) to P2 and outputs

b = b1 ⊕ b2. (If P2 does not reply, or replies with an invalid value,
then P2 sets b2 = 0.)

4 Upon receiving (b1, r) from P1, party P2 checks that c = Com (b1; r) .
If yes, it outputs b = b1 ⊕ b2; else it outputs ⊥.

Theorem
Assume that Com is a perfectly-binding commitment scheme. Then,
Protocol above securely computes the bit coin-tossing functionality defined
by fct(λ, λ) = (U1,U1) .

Kurt Pan How To Simulate It June 8, 2021 54 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

I would like to add a personal anecdote here. The first
proof of security that I read that followed the ideal/real sim-
ulation paradigm with security for malicious adversaries was
this proof by Oded Goldreich (it appeared in a very early
draft on Secure Multiparty Computation that can be found at
www.wisdom.weizmann.ac.il/�oded/pp.html). I remember read-
ing it multiple times until I understood why all the complications
were necessary. Thus, for me, this proof brings back fond memo-
ries of my first steps in secure computation.
– by Lindell

Kurt Pan How To Simulate It June 8, 2021 55 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The simulator here is the ideal-model adversary. It externally interacts
with the trusted party computing the functionality, and internally
interacts with the real-model adversary as part of the simulation.
(Internal interaction is not real, and is just the simulator internally feeding
messages to A that it runs as a subroutine)

The simulator needs to send the trusted party the corrupted party’s input
and receive back its output. In this specific case of coin tossing, the
parties have no input, and so the adversary just receives the output from
the trusted party (formally, the parties send an empty string λ as input so
that the trusted party knows to compute the functionality).
The challenge of the simulator is to make the output of the execution that
it simulates equal the output that it received from the trusted party.

Kurt Pan How To Simulate It June 8, 2021 56 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

P2 is corrupted

Proof.
Simulator S :

1 S sends λ externally to the trusted party computing fct and receives
back a bit b.

2 S initializes a counter i = 1.
3 S invokes A, chooses a random b1 ∈R {0, 1} and r ∈R {0, 1}n and

internally hands A the value c = Com (b1; r) as if it was sent by P2.
4 If A replies with b2 = b⊕ b1, then S internally hands A the pair

(b1, r) and outputs whatever A outputs. (As in the protocol, if A
does not reply or replies with an invalid value, then this is interpreted
as b2 = 0.)

5 If A replies with b2 ̸= b⊕ b1 and i < n, then S sets i = i + 1 and
returns back to Step 3 .

6 If i = n, then S outputs fail.

Kurt Pan How To Simulate It June 8, 2021 57 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

P2 is corrupted

Claim 1
S outputs fail with negligible probability

Claim 2
Conditioned on S does not output fail, the output distributions IDEAL
and REAL are statistically close.

Real: In a real execution, b1 and r are uniformly distributed.
Ideal: In an ideal execution, a random b is chosen, and then random
b1 and r are chosen under the constraint that
b1 ⊕A (Com (b1; r)) = b.

Kurt Pan How To Simulate It June 8, 2021 58 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

P1 is corrupted

Proof.
Simulator S:

1 S sends λ externally to the trusted party computing fct and receives
back a bit b.

2 S invokes A and internally receives the message c that A sends to P1.
3 S internally hands A the bit b2 = 0 as if coming from P2, and

receives back its reply. Then, S internally hands A the bit b2 = 1 as
if coming from P2, and receives back its reply.

a If A replies with a valid decommitment (b1, r) such that
Com (b1; r) = c in both iterations, then S externally sends continue to
the trusted party. In addition, S defines b2 = b1 ⊕ b, internally hands
A the bit b2, and outputs whatever A outputs.

b If A does not reply with a valid decommitment in either iteration, then
S externally sends abort1 to the trusted party. Then, S internally
hands A a random bit b2 and outputs whatever A outputs.

Kurt Pan How To Simulate It June 8, 2021 59 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

P1 is corrupted

Proof.
c If A replies with a valid decommitment (b1, r) such that

Com (b1; r) = c only when given b2 where b1 ⊕ b2 = b, then S
externally sends continue to the trusted party. Then, S internally
hands A the bit b2 = b1 ⊕ b and outputs whatever A outputs.

c If A replies with a valid decommitment (b1, r) such that
Com (b1; r) = c only when given b2 where b1 ⊕ b2 ̸= b, then S
externally sends abort1 to the trusted party. Then, S internally hands
A the bit b2 = b1 ⊕ b⊕ 1 and outputs whatever A outputs.

Claim
In each case, the joint distributions over A ’s output and the honest
party’s output are identical in the real and ideal executions.

Kurt Pan How To Simulate It June 8, 2021 60 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discussion

In the malicious setting, many additional issues needed to be dealt
with:

1 The adversary can send any message and so the simulator must
”interact” with it.

2 The adversary may abort in some cases and this must be carefully
simulated so that the distribution is not skewed when aborts can
happen.

3 The adversary may abort after it receives the output and before the
honest party receives the output. This must be correlated with the
abort and continue instructions sent to the trusted party, in order to
ensure that the honest party aborts with the same probability in the
real and ideal executions, and that this behavior matches the view of
the adversary.

The need to consider the joint distribution over the outputs, and to
simulate for the output received from the trusted party, adds
considerable complexity.

Kurt Pan How To Simulate It June 8, 2021 61 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subsection 2

Securely Tossing Many Coins and the Hybrid Model

Kurt Pan How To Simulate It June 8, 2021 62 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

To toss ℓ = poly(n) many coins in a constant number of rounds:
fℓct(λ, λ) =

(
Uℓ(n),Uℓ(n)

)
.

Assume that we are given a constant-round protocol that securely
computes the zero-knowledge proof of knowledge functionality
for any NP -relation. This functionality is parameterized by a
relation R ∈ NP and is defined by fRzk((x,w), x) = (λ,R(x,w)).
Hybrid functionalities:

Let L1 = {c | ∃(x, r) : c = Com(x; r)} be the language of all valid
commitments, and let R1 be its associated NP -relation (for statement
c the witness is x, r such that c = Com(x; r)).
Let L2 = {(c, x) | ∃r : c = Com(x; r)} be the language of all pairs of
commitments and committed values, and let R2 be its associated NP
-relation (for statement (c, x) the witness is r such that c = Com(x; r)).
The parties have access to a trusted party that computes the
zero-knowledge proof of knowledge functionalities fR1

zk and fR2
zk

associated with relations R1 and R2, respectively.

Kurt Pan How To Simulate It June 8, 2021 62 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multiple Coin Tossing
1 P1 chooses a random ρ1 ∈ {0, 1}ℓ(n) and a random r ∈ {0, 1}poly(n) of

length sufficient to commit to ℓ(n) bits, and sends c = Com (ρ1; r) to
P2.

2 P1 sends (c, (ρ1, r)) to fR1
zk .

3 Upon receiving c, party P2 sends c to fR1
zk and receives back a bit b. If

b = 0 then P2 outputs ⊥ and halts. Otherwise, it proceeds.
4 P2 chooses a random ρ2 ∈ {0, 1}ℓ(n) and sends ρ2 to P1.
5 Upon receiving ρ2, party P1 sends ρ1 to P2 and sends ((c, ρ1) , r) to

fR2
zk . (If P2 does not reply, or replies with an invalid value, then P1 sets
ρ2 = 0ℓ(n))

6 Upon receiving ρ1, party P2 sends (c, ρ1) to fR2
zk and receives back a

bit b. If b = 0 then P2 outputs ⊥ and halts. Otherwise, it outputs
ρ = ρ1 ⊕ ρ2.

7 P1 outputs ρ = ρ1 ⊕ ρ2.

Kurt Pan How To Simulate It June 8, 2021 63 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proving in the hybrid model
S has many types of interactions :

1 External interaction with the trusted party: this is real interaction
where S sends and receives messages externally.

2 Internal simulated interaction with the real adversary A : this is
simulated interaction and involves internally invoking A as a
subroutine on incoming messages. This interaction is of two
sub-types:

a Internal simulation of real messages between A and the honest party.
b Internal simulation of ideal messages between A and the trusted

party computing the functionality used as a subprotocol in the hybrid
model.The simulator directly receives the input that the adversary
sends and can write any output that it likes.

Theorem
Assume that Com is a perfectly-binding commitment scheme and let ℓ be
a polynomial. Then, Protocol above securely computes the functionality
fℓct(λ, λ) =

(
Uℓ(n),Uℓ(n)

)
in the

(
fR1
zk , f

R2
zk

)
-hybrid model.

Kurt Pan How To Simulate It June 8, 2021 64 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

P1 corrupted

Proof.
Simulator S :

1 S invokes A, and receives the message c that A sends to P2, and the
message (c′, (ρ1, r)) that A sends to fR1

zk .
2 If c′ ̸= c or c ̸= Com (ρ1; r), then S sends abort1 to the trusted party

computing fℓct, simulates P2 aborting, and outputs whatever A
outputs. Otherwise, it proceeds to the next step.

3 S sends 1n to the external trusted party computing fℓct and receives
back a string ρ ∈ {0, 1}ℓ(n).

4 S sets ρ2 = ρ⊕ ρ1 (where ρ is as received from fℓct and ρ1 is as
received from A as part of its message to fR1

zk

)
, and internally hands

ρ2 to A.

Kurt Pan How To Simulate It June 8, 2021 65 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
5 S receives the message ρ′1 that A sends to P2, and the message

((c′′, ρ′′1) , r′′) that A sends to fR2
zk . If c′′ ̸= c or ρ′1 ̸= ρ′′1 or

c ̸= Com (ρ′′1; r′′) then S sends abort1 to the trusted party computing
fℓct, simulates P2 aborting, and outputs whatever A outputs.
Otherwise, S externally sends continue to the trusted party, and
outputs whatever A outputs.

Claim
Joint distribution over A ’s view and P2 ’s output is identical in the real
and ideal executions.

Kurt Pan How To Simulate It June 8, 2021 66 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

P2 corrupted

Proof.
Simulator S :

1 S sends 1n to the external trusted party computing fℓct and receives
back a string ρ ∈ {0, 1}ℓ(n). S externally sends continue to the
trusted party (P1 always receives output).

2 S chooses a random r ∈ {0, 1}poly (n) of sufficient length to commit
to ℓ(n) bits, and computes c = Com

(
0ℓ(n); r

)
3 S internally invokes A and hands it c.
4 S receives back some ρ2 from A .
5 S sets ρ1 = ρ2 ⊕ ρ and internally hands A the message ρ1 .
6 S receives some pair (c′, ρ′1) from A as it sends to fR2

zk (as the
”verifier”). If (c′, ρ′1) ̸= (c, ρ1) then S internally simulates fR2

zk sending
0 to A. Otherwise, S internally simulates fR2

zk sending 1 to A.
7 S outputs whatever A outputs.

Kurt Pan How To Simulate It June 8, 2021 67 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

P2 corrupted

Proof.
Let S ′ work in the same way as S except that instead of receiving ρ
externally from the trusted party, S ′ chooses ρ by itself (uniformly at
random) after receiving ρ2 from A. In addition, the output of the honest
party is set to be ρ. S ′ outputs the pair (ρ, output (A)), where output (A)
is the output of A after the simulation.

Claim 1 {
S ′ (1n)

}
n∈N ≡

{
IDEALfℓct,S

(1n, 1n, n)
}

n∈N

Claim 2 {
S ′ (1n)

}
n∈N

c≡ {REALπ,A (1n, 1n, n)}n∈N

Kurt Pan How To Simulate It June 8, 2021 68 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discussion

No rewinding is necessary.
Nnot necessary to justify that the simulation is polynomial time,
Not necessary to justify that the output distribution is not skewed by
the rewinding procedure.

Kurt Pan How To Simulate It June 8, 2021 69 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Section 6

Extracting Inputs – Oblivious Transfer

Kurt Pan How To Simulate It June 8, 2021 70 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

RAND procedure

Definition
Let G be a multiplicative group of prime order q. Define the probabilistic
procedure

RAND(g, x, y, z) = (u, v) =
(
gs · yt, xs · zt)

where s, t ∈R Zq are uniformly random.

Claim
Let g be a generator of G and let x, y, z ∈ G. If (g, x, y, z) do not form a
Diffie-Hellman tuple (i.e., there does not exist a ∈ Zq such that y = ga

and z = xa), then RAND(g, x, y, z) is uniformly distributed in G2.

Kurt Pan How To Simulate It June 8, 2021 70 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Oblivious Transfer

Oblivious transfer functionality : fot ((x0, x1) , σ) = (λ, xσ)
Simulator must extract the input from the adversary, send it to the
trusted party and receive back the output. The view generated by the
simulator must then correspond to this input and output.
Let L = {(G, q, g0, x, y, z) | ∃a ∈ Zq : y = (g0)

a ∧ z = xa} be the
language of all Diffie-Hellman tuples , and let RL be its associated
NP -relation. The parties have access to a trusted party that
computes the zero-knowledge proof of knowledge functionality fRL

zk
associated with relation RL.

Kurt Pan How To Simulate It June 8, 2021 71 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Oblivious Transfer
1 Party P2 chooses random values y, α ∈R Zq and computes

g1 = (g0)
y , h0 = (g0)

α and h1 = (g1)
α+1 and sends (g1, h0, h1) to

party P1.
2 P2 sends statement

(
G, q, g0, g1, h0,

h1
g1

)
and witness α to fRL

zk .

3 P1 sends statement
(
G, q, g0, g1, h0,

h1
g1

)
to fRL

zk and receives back a
bit. If the bit equals 0 , then it halts and outputs ⊥. Otherwise, it
proceeds to the next step.

4 P2 chooses a random value r ∈R Zq, computes g = (gσ)r and
h = (hσ)r, and sends (g, h) to P1

5 P1 computes (u0, v0) = RAND (g0, g, h0, h), and
(u1, v1) = RAND (g1, g, h1, h). P1 sends P2 the values (u0,w0) where
w0 = v0 · x0, and (u1,w1) where w1 = v1 · x1.

6 P2 computes xσ = wσ/ (uσ)r.
7 P1 outputs λ and P2 outputs xσ

Kurt Pan How To Simulate It June 8, 2021 72 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem
Assume that the Decisional Diffie-Hellman problem is hard in the
auxiliary-input group G. Then, Protocol above securely computes fot in the
presence of malicious adversaries.

Kurt Pan How To Simulate It June 8, 2021 73 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

P1 is corrupted

Proof.
1 S internally invokes A controlling P1
2 S chooses y, α ∈R Zq and computes g1 = (g0)

y , h0 = (g0)
α and

h1 = (g1)
α. (Note that h1 = (g1)

α and not (g1)
α+1)

3 S internally hands (g1, h0, h1) to A.
4 When A sends a message intended for fRL

zk . If the message equals(
G, q, g0, g1, h0,

h1
g1

)
then S internally hands A the bit 1 as if it came

from fRL
zk . If the message equals anything else, then S simulates A

receiving 0 from fRL
zk .

5 S chooses a random value r ∈R Zq, computes g = (g0)
r and

h = (h0)
r, and internally sends (g, h) to A. (This is exactly like an

honest P2 with input σ = 0.)

Kurt Pan How To Simulate It June 8, 2021 74 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
6 When A sends messages (u0,w0) , (u1,w1) then simulator S

computes x0 = w0/ (u0)
r and x1 = w1/ (u1)

r·y−1 mod q.
7 S sends (x0, x1) to the trusted party computing fot .
8 S outputs whatever A outputs, and halts.

DDH assumption

Kurt Pan How To Simulate It June 8, 2021 75 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

P2 is corrupted

Proof.
1 S internally invokes A controlling P2.
2 S internally obtains (g1, h0, h1) from A, as it intends to send to P1.
3 S internally obtains an input tuple and α from A, as it intends to

send to fRL
zk .

4 S checks that the input tuple equals
(
G, q, g0, g1, h0,

h1
g1

)
, that

h0 = (g0)
α and h1

g1
= (g1)

α.
5 S internally obtains a pair (g, h) from P2. If h = gα then S sets
σ = 0. Otherwise, it sets σ = 1.

6 S externally sends σ to the trusted party computing fot and receives
back xσ.

7 S computes (uσ, vσ) = RAND (gσ, g, hσ, h) and wσ = vσ · xσ. In
addition, S sets (u1−σ,w1−σ) to be independent uniformly distributed
in G2.

Kurt Pan How To Simulate It June 8, 2021 76 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
8 S internally hands (u0,w0) , (u1,w1) to A.
9 S outputs whatever A outputs and halts.

Kurt Pan How To Simulate It June 8, 2021 77 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Section 7

The Common Reference String Model – Oblivious
Transfer

Kurt Pan How To Simulate It June 8, 2021 78 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CRS model
plain model with no trusted setup
a trusted setup is used to obtain additional properties
CRS can be used to achieve non-interactive zero knowledge , which is
impossible in the plain model.
CRS is used to achieve security under composition
In the CRS model, in the real model the parties are provided the same
string generated by M, whereas in the ideal model the simulator
chooses the string. Since the real and ideal models must be
indistinguishable, this means that the CRS chosen by the simulator
must be indistinguishable from the CRS chosen by M.
The motivation behind this definition is that if an adversary can
attack the protocol in the real model, then it can also attack the
protocol in the ideal model with the simulator.
The simulator must have additional power beyond that of a legitimate
party. In the CRS model, it is possible to construct a simulator that
does not rewind the adversary, since its additional power is in
choosing the CRS itself.

Kurt Pan How To Simulate It June 8, 2021 78 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CRS model

Two ways to define security in the CRS model:
to include the CRS in the output distributions.
to define an ideal CRS functionality fcrs (1n, 1n) = (M (1n) ,M (1n)) .
Then, one constructs a protocol and proves its security in the fcrs
-hybrid model.

Hybrid functionality fcrs : A group G of order q(of length n) with
generator g0 is sampled, along with three random elements g1, h0, h1 ∈R G
of the group. fcrs sends (G, q, g0, g1, h0, h1) to P1 and P2.

Kurt Pan How To Simulate It June 8, 2021 79 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

OT
1 P2 chooses a random value r ∈R Zq, computes g = (gσ)r and

h = (hσ)r, and sends (g, h) to P1
2 P1 computes (u0, v0) = RAND (g0, g, h0, h), and

(u1, v1) = RAND (g1, g, h1, h). P1 sends P2 the values (u0,w0) where
w0 = v0 · x0, and (u1,w1) where w1 = v1 · x1

3 P2 computes xσ = wσ/ (uσ)r .

4 P1 outputs λ and P2 outputs xσ.

Kurt Pan How To Simulate It June 8, 2021 80 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Section 8

Advanced Topics

Subsection 1

Composition and Universal Composability

Kurt Pan How To Simulate It June 8, 2021 81 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Composition and Universal Composability

stand-alone model implies security under sequential composition
security under concurrent composition
adding an environment machine which is essentially an interactive
distinguisher. The environment writes the inputs to the parties’ input
tapes and reads their outputs. In addition, it externally interacts with
the adversary throughout the execution. The environment’s “goal” is
to distinguish between a real protocol execution and an ideal
execution.

Kurt Pan How To Simulate It June 8, 2021 81 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subsection 2

Proofs in the Random Oracle Model

Kurt Pan How To Simulate It June 8, 2021 82 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs in the Random Oracle Model

Random oracle model is used to gain higher efficiency or other
properties otherwise unobtainable.
Whether or not the distinguisher obtains access to the random oracle,
and if yes, how.

If the distinguisher does not have any access: very weak definition,
sequential composition will not be guaranteed.
If provide with the same randomly chosen oracle as the parties and the
(real and ideal) adversary: obtain a non-programmable random oracle
which may not be strong enough.
Provide the random oracle, but in the ideal world to allow the simulator
to still control the oracle: a somewhat strange formulation, but
something of this type seems necessary in some cases.

Kurt Pan How To Simulate It June 8, 2021 82 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subsection 3

Adaptive Security

Kurt Pan How To Simulate It June 8, 2021 83 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adaptive Security

static adversaries where the subset of corrupted parties is fixed
before the protocol execution begins.
adaptive adversary can choose which parties to corrupt throughout
the protocol, based on the messages viewed
no erasures model: parties cannot securely erase data
erasures model: parties can securely erase data

Kurt Pan How To Simulate It June 8, 2021 83 / 84

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Thanks!

Kurt Pan How To Simulate It June 8, 2021 84 / 84

	Semantic Security as Simulation
	Simulation for Semi-Honest Adversaries
	Oblivious Transfer for Semi-Honest Adversaries

	Simulating the View of Malicious Adversaries – Zero Knowledge
	Defining Zero Knowledge
	Commitment Schemes
	Non-Constant Round Zero Knowledge
	Constant-Round Zero-Knowledge
	Honest-Verifier Zero Knowledge

	Defining Security for Malicious Adversaries
	Modular Sequential Composition

	Determining Output – Coin Tossing
	Coin Tossing a Single Bit
	Securely Tossing Many Coins and the Hybrid Model

	Extracting Inputs – Oblivious Transfer
	The Common Reference String Model – Oblivious Transfer
	Advanced Topics
	Composition and Universal Composability
	Proofs in the Random Oracle Model
	Adaptive Security

