ODE: $$\frac{dy}{dt} = f(y,t),$$ $$y(t=0) = y_0.$$
where the $\mathcal{O}(\Delta t^2)$ term is the local error of the EE method. When we expand this we get
$$y_{k+1} = y_k + \Delta t y^{\prime}_{k+1/2}+\mathcal{O}(\Delta t^3) + \mathcal{O}(\Delta t^3) = y_k + \Delta ty^{\prime}_{k+1/2}+\mathcal{O}(\Delta t^3),$$
so there is no overall change in the global order of the method.
where $f_{y,k}$ is the derivative of $f$ with respect to $y$ evaluated at point $k$.
Now, we will take a Taylor series of $y_{k+1}$ and compare it with the above green equation.
\begin{align} y_{k+1} &= y_k + y_k^{\prime}h + \frac{1}{2} y_k^{\prime\prime}h^2 + \mathcal{O}(h^3),\\ &= y_k + f_kh + \frac{1}{2}h^2(y^{\prime})^{\prime}_k + \mathcal{O}(h^3). \end{align}
$$(y^{\prime})^{\prime} = \left.\frac{\partial f}{\partial t}\right|_k = \left.\frac{\partial f}{\partial y}\frac{dy}{dt}\right|_k = f_{y,k}f_k.$$
Again, the green equation above is:
Recall our 2nd order method: \begin{align*} y_{k+1} = &y_k + h(c_1S_1 + c_2S_2), \\ &S_1 = f(y_k), \\ &S_2 = f(y_k + \beta hS_1). \end{align*}
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
def odeRK4(f, y0, t):
ns = len(t)-1
y = np.zeros(ns+1)
y[0] = y0
for k in range(ns):
h = t[k+1]-t[k]
S1 = f(y[k],t[k])
S2 = f(y[k]+0.5*h*S1, t[k]+0.5*h)
S3 = f(y[k]+0.5*h*S2, t[k]+0.5*h)
S4 = f(y[k]+ h*S3, t[k]+ h)
y[k+1] = y[k] + h/6*(S1 + 2*S2 + 2*S3 + S4)
return y
def odeEE(f, y0, t):
ns = len(t)-1
y = np.zeros(ns+1)
y[0] = y0
for k in range(ns):
h = t[k+1]-t[k]
y[k+1] = y[k] + h*f(y[k],t[k])
return y
def f(y, t):
return -y
#----------------------
y0 = 1.0
tend = 5.0
t = np.linspace(0,tend,11)
#----------------------
y_RK4 = odeRK4(f,y0,t)
y_EE = odeEE(f,y0,t)
tt = np.linspace(0,tend,100)
y_Exact = np.exp(-tt)
#----------------------
plt.rc('font', size=14)
plt.plot(tt,y_Exact,'k--')
plt.plot(t, y_RK4, 'o')
plt.plot(t, y_EE, '^')
plt.legend(['exact', 'RK4', 'EE'], frameon=False)
plt.ylabel('y')
plt.xlabel('t');