#!/usr/bin/env python # coding: utf-8 # # A computer-assisted exploration of visual themes in Taylor Swift's music videos # # Eamonn Bell, Columbia University `` # --- # For academic use only. WORK IN PROGRESS. # # --- # ## Summary # # In this notebook I show how to use the [Clarifai](http://www.clarifai.com/) neural-network-driven image tagging API on music videos released by Taylor Swift in order to demonstrate the utility of this technology to the study of music videos. # # ## Abstract # # TBD # In[1]: from clarifai.client import ClarifaiApi import glob import os import pandas import numpy as np from matplotlib import pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: clarifai_api = ClarifaiApi() # In[3]: TS_WE_ARE_NEVER = 'WA4iX5D9Z64' TS_22 = 'AgFeZr5ptV8' video_ids = [TS_WE_ARE_NEVER, TS_22] # In[20]: for video_id in video_ids: os.system(r"youtube-dl {} -o '%(id)s'".format(video_id)) # In[28]: for video_id in video_ids: os.system(r"ffmpeg -i {0}.mp4 -r 1 {0}-%3d.jpeg".format(video_id)) # In[15]: results = {} # http://stackoverflow.com/a/434328 def chunker(seq, size): return (seq[pos:pos + size] for pos in xrange(0, len(seq), size)) def tag_images_queue(queue): results = [] for frames in queue: open_files = [open(frame) for frame in frames] api_response = clarifai_api.tag_images(open_files) closed = [f.close() for f in open_files] results.extend(api_response['results']) return results def tag_batch(frames): file_count = len(frames) q = [] if file_count >= 127: for chunk in chunker(frames, 127): q.append(chunk) else: q.append(frames) return tag_images_queue(q) for video_id in video_ids: frames = sorted(glob.glob('{}-*.jpeg'.format(video_id))) api_response_results = tag_batch(frames) results[video_id] = api_response_results # In[19]: len(results['AgFeZr5ptV8']) # In[20]: def parse_video_results(video_results): classes_seen = [] tags_dicts = [] for frame_result in video_results: classes_seen.extend(frame_result['result']['tag']['classes']) for frame_result in video_results: classes = frame_result['result']['tag']['classes'] probs = frame_result['result']['tag']['probs'] tags_dict = dict(zip(classes, probs)) unseen_classes = (class_ for class_ in classes_seen if class_ not in classes) for unseen_class in unseen_classes: tags_dict[unseen_class] = np.nan tags_dicts.append(tags_dict) return tags_dicts # In[21]: def parse_results_dict(results_dict): _ = [] for video_id in results_dict.keys(): video_results = results_dict[video_id] parsed_video = parse_video_results(video_results) video_df = pandas.DataFrame(parsed_video) video_df['_video_id'] = video_id video_df.index.names = ['frame'] _.append(video_df) return pandas.concat(_) # In[22]: data = parse_results_dict(results) # In[23]: data.head() # In[26]: data.to_pickle('video_data.pkl') # ## Recurring imagery # In[103]: def most_common_images(video_id, limit=100): video_data = data[data._video_id == video_id] return video_data.count().order(ascending=False).head(limit) # In[104]: most_common_images(TS_WE_ARE_NEVER) # ## Narratology: male/female dynamics # In[68]: data[data._video_id == TS_WE_ARE_NEVER][['women', 'men']].plot() plt.title('Taylor Swift - We Are Never Getting Back Together') plt.xlabel('Video location (s)') plt.ylabel('Tag class confidence (proprietary)') # In[67]: data[data._video_id == TS_22][['women', 'men']].plot() plt.title('Taylor Swift - 22') plt.xlabel('Video location (s)') plt.ylabel('Tag class confidence (proprietary)') # In[111]: d = data[data._video_id == TS_22][['women', 'men']].interpolate() woman_on_screen = pandas.rolling_mean(d['women'], 2) > 0.90 to_plot = woman_on_screen.apply(lambda x: 0.85 if x else 0.35) to_plot.plot(color='red') men_on_screen = pandas.rolling_mean(d['men'], 2) > 0.90 to_plot = men_on_screen.apply(lambda x: 0.75 if x else 0.25) to_plot.plot(color='blue') plt.title('Gendered Screentime : Taylor Swift - 22') # In[108]: d = data[data._video_id == TS_WE_ARE_NEVER][['women', 'men']].interpolate() woman_on_screen = pandas.rolling_mean(d['women'], 2) > 0.90 to_plot = woman_on_screen.apply(lambda x: 0.85 if x else 0.35) to_plot.plot(color='red') men_on_screen = pandas.rolling_mean(d['men'], 2) > 0.90 to_plot = men_on_screen.apply(lambda x: 0.75 if x else 0.25) to_plot.plot(color='blue') plt.title('Gendered Screentime : We Are Never Getting Back Together') # In[ ]: