#!/usr/bin/env python # coding: utf-8 # ### Demo of trying Vorticity_Divergence_Inversion.ipynb via MyBinder.org-served session # # How this was generated in response [discouse conversation about running a notebook](https://discourse.jupyter.org/t/unable-to-show-the-print-output-of-my-notebook/25523/5?u=fomightez). # (NOTE THAT BECAUSE I RAN INTO THINGS I DIDN'T UNDERSTAND I ADDED A PLOT USING A DEMO AT INPUT CELL #5 and stopped. Maybe the OP will have domain knowledge to get past this apparent hurdle that is probably due to different versions of the software being used. Ideally, the deveoper of [the source repo](https://github.com/winash12/vortdivinversion) should have listed versions in the repo with `requiremetns.txt` or `environment.yml` or in notebook with output of `%pip list` or `%conda list`, `%pip freeze` or something along those lines.) # # Went to [here](https://github.com/pydata/xarray?tab=readme-ov-file#xarray-n-d-labeled-arrays-and-datasets) and clicked 'launch binder'. # # In the session that came up, I opened a terminal and ran `git clone https://github.com/winash12/vortdivinversion.git` to clone the related notebook and content. # # In the file navigation panel on the left, I double clicked on the directory that was listed as `vortdivinversion`. # # In the top of that notebook, I made a new cell and pasted in the following code that will install the necessary packages to run the first few cells and ran it. # In[1]: get_ipython().run_line_magic('pip', 'install cartopy') get_ipython().run_line_magic('pip', 'install boto3') get_ipython().run_line_magic('pip', 'install metpy') # In[2]: import os.path import xarray as xr import numpy as np import boto3 import metpy.calc as mpcalc from botocore import UNSIGNED from botocore.config import Config import matplotlib.pyplot as plt from matplotlib.cm import get_cmap #from matplotlib.colormaps import get_cmap import matplotlib.ticker as mticker import cartopy.crs as crs from cartopy.feature import NaturalEarthFeature from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import sys import time if (not os.path.isfile('gfs.t12z.pgrb2.0p25.f000')): client = boto3.client('s3', config=Config(signature_version=UNSIGNED)) client.download_file('noaa-gfs-bdp-pds', 'gfs.20230809/12/atmos/gfs.t12z.pgrb2.0p25.f000', 'gfs.t12z.pgrb2.0p25.f000') # In[3]: u850 = xr.open_dataset('gfs.t12z.pgrb2.0p25.f000', engine='cfgrib',backend_kwargs={'filter_by_keys':{'typeOfLevel': 'isobaricInhPa', 'shortName': 'u', 'level': 850}}) u = u850.u print(u.shape) v850 = xr.open_dataset('gfs.t12z.pgrb2.0p25.f000', engine='cfgrib', backend_kwargs={'filter_by_keys':{'typeOfLevel': 'isobaricInhPa', 'shortName': 'v', 'level': 850}}) v = v850.v # Compute the 850 hPa relative vorticity. # In[4]: vort850 = mpcalc.vorticity(u, v) fig = plt.figure(figsize=(12,9), dpi=300.) # Create a set of axes for the figure and set # its map projection to that of the input data. ax = plt.axes(projection=crs.PlateCarree()) # I don't know why that doesn't work to show any plot. (I do note that I see `UserWarning: More than one time coordinate present for variable "u"` and a lot time warnings are just warnings and something usually shows. # The vorticity dpcumentation [here](https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.vorticity.html) does say, "Changed in version 1.0: Changed signature from (u, v, dx, dy)". I cannot tell if maybe that is the issue and the notebook was using older version of metpy? # I note that the [example here](https://unidata.github.io/MetPy/latest/examples/calculations/Vorticity.html#sphx-glr-examples-calculations-vorticity-py) works fine **and gives a plot**, as can be seen by running the code below: # In[5]: import matplotlib.pyplot as plt import metpy.calc as mpcalc from metpy.cbook import example_data # load example data ds = example_data() # Calculate the vertical vorticity of the flow vort = mpcalc.vorticity(ds.uwind, ds.vwind) # start figure and set axis fig, ax = plt.subplots(figsize=(5, 5)) # scale vorticity by 1e5 for plotting purposes cf = ax.contourf(ds.lon, ds.lat, vort * 1e5, range(-80, 81, 1), cmap=plt.cm.PuOr_r) plt.colorbar(cf, pad=0, aspect=50) ax.barbs(ds.lon.values, ds.lat.values, ds.uwind, ds.vwind, color='black', length=5, alpha=0.5) ax.set(xlim=(260, 270), ylim=(30, 40)) ax.set_title('Relative Vorticity Calculation') plt.show() # Add country borders and coastlines. # In[ ]: countries = NaturalEarthFeature(category="cultural", scale="50m", facecolor="none", name="admin_0_countries") ax.add_feature(countries, linewidth=.5, edgecolor="black") ax.coastlines('50m', linewidth=0.8) # In[ ]: plot = vort850.plot(levels=np.arange(-1.e-4, 1.e-4, 0.2e-5), cmap=get_cmap('PRGn'), transform=crs.PlateCarree(), cbar_kwargs={'label':'relative vorticity (x$10^{-5} s^{-1}$)', 'shrink': 0.98}) # Set the map's extent to cover just Hurricane Dora. # In[ ]: ax.set_extent([-180.,-150.,0.,20.],crs=crs.PlateCarree()) # Add latitude/longitude gridlines. # In[ ]: gridlines = ax.gridlines(color="grey", linestyle="dotted", draw_labels=True) gridlines.xlabels_top = False gridlines.ylabels_right = False gridlines.xlocator = mticker.FixedLocator(np.arange(-180.,149.,5.)) gridlines.ylocator = mticker.FixedLocator(np.arange(0.,21.,5.)) gridlines.xlabel_style = {'size':12, 'color':'black'} gridlines.ylabel_style = {'size':12, 'color':'black'} gridlines.xformatter = LONGITUDE_FORMATTER gridlines.yformatter = LATITUDE_FORMATTER # Add a plot title, then show the image. # In[ ]: plt.title("GFS 0-h 850 hPa relative vorticity (x$10^{-5} s^{-1}$) at 1200 UTC 9 August 2023") plt.show() # Compute the 850 hPa divergence. # In[ ]: div850 = mpcalc.divergence(u, v) # Create a figure instance. # In[ ]: fig = plt.figure(figsize=(12,9), dpi=300.) # Create a set of axes for the figure and set
# its map projection to that of the input data. # In[ ]: ax = plt.axes(projection=crs.PlateCarree()) # Add country borders and coastlines. # In[ ]: countries = NaturalEarthFeature(category="cultural", scale="50m", facecolor="none", name="admin_0_countries") ax.add_feature(countries, linewidth=.5, edgecolor="black") ax.coastlines('50m', linewidth=0.8) # Plot the 850 hPa divergence using xarray's plot functionality. # In[ ]: plot = div850.plot(levels=np.arange(-1.e-4, 1.e-4, 0.2e-5), cmap=get_cmap('PRGn'), transform=crs.PlateCarree(), cbar_kwargs={'label':'relative vorticity (x$10^{-5} s^{-1}$)', 'shrink': 0.98}) # Set the map's extent to cover just Hurricane Dora. # In[ ]: ax.set_extent([-180.,-150.,0.,20.],crs=crs.PlateCarree()) # Add latitude/longitude gridlines. # In[ ]: gridlines = ax.gridlines(color="grey", linestyle="dotted", draw_labels=True) gridlines.xlabels_top = False gridlines.ylabels_right = False gridlines.xlocator = mticker.FixedLocator(np.arange(-180.,149.,5.)) gridlines.ylocator = mticker.FixedLocator(np.arange(0.,21.,5.)) gridlines.xlabel_style = {'size':12, 'color':'black'} gridlines.ylabel_style = {'size':12, 'color':'black'} gridlines.xformatter = LONGITUDE_FORMATTER gridlines.yformatter = LATITUDE_FORMATTER # Add a plot title, then show the image. # In[ ]: plt.title("GFS 0-h 850 hPa divergence (x$10^{-5} s^{-1}$) at 1200 UTC 9 August 2023") plt.show() # In[ ]: vortmask = mpcalc.bounding_box_mask(vort850,5.,13.5,191.,202.) # In[ ]: divmask = mpcalc.bounding_box_mask(div850,5.,13.5,191.,202.) # In[ ]: i_bb_indices = mpcalc.find_bounding_box_indices(vortmask,5.,13.5,191.,202.) # In[ ]: o_bb_indices = mpcalc.find_bounding_box_indices(vortmask,0.,30,180.,220) # In[ ]: dx, dy = mpcalc.lat_lon_grid_deltas(vortmask.longitude, vortmask.latitude) # In[ ]: upsi,vpsi = mpcalc.rotational_wind_from_inversion(vortmask,dx,dy,o_bb_indices,i_bb_indices) # Create a figure instance. # In[ ]: fig = plt.figure(figsize=(12,9), dpi=300.) # Create a set of axes for the figure and set
# its map projection to that of the input data. # In[ ]: ax = plt.axes(projection=crs.PlateCarree()) # Add country borders and coastlines. # In[ ]: countries = NaturalEarthFeature(category="cultural", scale="50m", facecolor="none", name="admin_0_countries") ax.add_feature(countries, linewidth=.5, edgecolor="black") ax.coastlines('50m', linewidth=0.8) # Compute the magnitude of the non-divergent component of the 850 hPa wind. # In[ ]: nd_spd = np.sqrt(upsi**2 + vpsi**2) # Plot this using xarray's plot functionality. # In[ ]: plot = nd_spd.plot(levels=np.arange(0., 13., 1.), cmap=get_cmap('YlGnBu'), transform=crs.PlateCarree(), cbar_kwargs={'label':'non-divergent wind ($m s^{-1}$)', 'shrink': 0.98}) # Set the map's extent to match that over which we computed the non-divergent wind. # In[ ]: ax.set_extent([-180.,-140.,0.,30.],crs=crs.PlateCarree()) # Add latitude/longitude gridlines. # In[ ]: gridlines = ax.gridlines(color="grey", linestyle="dotted", draw_labels=True) gridlines.xlabels_top = False gridlines.ylabels_right = False gridlines.xlocator = mticker.FixedLocator(np.arange(-180.,139.,5.)) gridlines.ylocator = mticker.FixedLocator(np.arange(0.,31.,5.)) gridlines.xlabel_style = {'size':12, 'color':'black'} gridlines.ylabel_style = {'size':12, 'color':'black'} gridlines.xformatter = LONGITUDE_FORMATTER gridlines.yformatter = LATITUDE_FORMATTER # Add a plot title, then show the image. # In[ ]: plt.title("GFS 0-h 850 hPa non-divergent wind magnitude ($m s^{-1}$) due to Dora at 1200 UTC 9 August 2023") plt.show() # In[ ]: uchi,vchi = mpcalc.divergent_wind_from_inversion(divmask,dx,dy,o_bb_indices,i_bb_indices) # Create a set of axes for the figure and set
# its map projection to that of the input data. # In[ ]: ax = plt.axes(projection=crs.PlateCarree()) # Add country borders and coastlines. # In[ ]: countries = NaturalEarthFeature(category="cultural", scale="50m", facecolor="none", name="admin_0_countries") ax.add_feature(countries, linewidth=.5, edgecolor="black") ax.coastlines('50m', linewidth=0.8) # Compute the magnitude of the non-divergent component of the 850 hPa wind. # In[ ]: nd_spd = np.sqrt(uchi**2 + vchi**2) # Plot this using xarray's plot functionality. # In[ ]: plot = nd_spd.plot(levels=np.arange(0., 13., 1.), cmap=get_cmap('YlGnBu'), transform=crs.PlateCarree(), cbar_kwargs={'label':'non-divergent wind ($m s^{-1}$)', 'shrink': 0.98}) # Set the map's extent to match that over which we computed the non-divergent wind. # In[ ]: ax.set_extent([-180.,-140.,0.,30.],crs=crs.PlateCarree()) # Add latitude/longitude gridlines. # In[ ]: gridlines = ax.gridlines(color="grey", linestyle="dotted", draw_labels=True) gridlines.top_labels = False gridlines.right_labels = False gridlines.xlocator = mticker.FixedLocator(np.arange(-180.,139.,5.)) gridlines.ylocator = mticker.FixedLocator(np.arange(0.,31.,5.)) gridlines.xlabel_style = {'size':12, 'color':'black'} gridlines.ylabel_style = {'size':12, 'color':'black'} gridlines.xformatter = LONGITUDE_FORMATTER gridlines.yformatter = LATITUDE_FORMATTER # Add a plot title, then show the image. # In[ ]: plt.title("GFS 0-h 850 hPa divergent wind magnitude ($m s^{-1}$) due to Dora at 1200 UTC 9 August 2023") plt.savefig('vectorized_version') plt.show()