#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import xarray as xr ds = xr.tutorial.open_dataset('rasm') # Set to classic repr by default for now so that we can merge and keep ironing out oddities: # In[2]: ds # ## New repr # In[3]: xr.set_options(display_style="html"); # Before the data are loaded, the preview won't show up. After the data are loaded below, the preview will be populated. # In[4]: ds.load() # In[5]: ds.Tair # ## Check sizes # In[6]: c = ds.__repr__() h = ds._repr_html_() # In[7]: import sys print(f'classic: {round(sys.getsizeof(c)/1000)}kb\nhtml: {round(sys.getsizeof(h)/1000)}kb') # ## Long var names # In[8]: xr.Dataset({ 'fdhskafhdjsafdsafhldsa;fjkld;sajkfdsla;fdjksa': ds.Tair, 'wuildjklsahjdklsahfjkdshafjkldsahjfkdslafhdsja': ds.Tair}) # ## `MultiIndex` # In[9]: array = xr.DataArray(np.random.randn(2, 3), coords=[('x', ['a', 'b']), ('y', [0, 1, 2])]) stacked = array.stack(z=('x', 'y')) stacked # ## Dask # In[10]: ds = xr.tutorial.open_dataset('air_temperature', chunks={'lat': 25, 'lon': 25, 'time': -1}) ds # We can use panel to see what the dataset looks like at smaller widths # In[11]: import panel as pn; pn.extension() xr.set_options(display_style="html"); # In[12]: dataset = pn.pane.HTML(ds, width=400, background="#ddffff") width = pn.widgets.IntSlider( value=dataset.width, start=300, end=700, width=150, name='width') width.jslink(dataset, value='width') pn.Row(width, dataset) # In[ ]: