#!/usr/bin/env python # coding: utf-8 # There are faster ways of doing spline interpolation, but a quick and dirty example of doing so in a python-stratify context follows: # In[1]: # Taken from https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.interpolate.CubicSpline.html#scipy.interpolate.CubicSpline import numpy as np import scipy.interpolate x = np.arange(10) y = np.sin(x) cs = scipy.interpolate.CubicSpline(x, y) xs = np.arange(-0.5, 9.6, 0.1) ys = cs(xs) import matplotlib.pyplot as plt plt.plot(x, y, 'ob', label='real') plt.plot(xs, ys, color='red', label='scipy.interpolate') plt.show() # In[2]: import numpy as np import stratify # In[3]: class SplineInterp(stratify.PyFuncInterpolator): def column_prep(self, z_target, z_src, fz_src, increasing): self.spline = scipy.interpolate.CubicSpline(z_src, fz_src, axis=-1) def interp_kernel(self, index, z_src, fz_src, level, output_array): output_array[:] = self.spline(level) class SplineExtrap(stratify.PyFuncExtrapolator): def column_prep(self, z_target, z_src, fz_src, increasing): self.spline = scipy.interpolate.CubicSpline(z_src, fz_src, axis=-1) def extrap_kernel(self, direction, z_src, fz_src, level, output_array): output_array[:] = self.spline(level) # In[4]: result = stratify.interpolate(xs, x, y, interpolation=SplineInterp(), extrapolation=SplineExtrap()) # In[5]: import matplotlib.pyplot as plt plt.plot(x, y, 'ob', label='actual') plt.plot(xs, result, color='red', label='stratify') plt.show() # Just to demonstrate that we are paying a price for dropping back into python at each iteration of the target levels, let's take a look at the execution time. # In[6]: get_ipython().run_cell_magic('timeit', '', 'result = stratify.interpolate(xs, x, y,\n interpolation=SplineInterp(),\n extrapolation=SplineExtrap())\n') # In[7]: get_ipython().run_cell_magic('timeit', '', 'cs = scipy.interpolate.CubicSpline(x, y)\nys = cs(xs)\n')