#!/usr/bin/env python # coding: utf-8 # # Cufflinks v0.6 # In[1]: import cufflinks as cf import pandas as pd # In[2]: get_ipython().run_line_magic('reload_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') # In[3]: cf.set_config_file(world_readable=True,offline=False) # ## Pie Charts # **datagen** can now generate a `DataFrame` with the structured required for a pie charts # In[5]: pie=cf.datagen.pie() pie.head() # `iplot` now accepts the paramter `kind=pie` to generate a pie chart # `labels` indicates the column that contains the category labels, and `values` indicates the column that contain the values to be charted # In[6]: pie.iplot(kind='pie',labels='labels',values='values') # Extra parameters can also be passed # `sort` : If True it sorts the labels by value # `pull` : Pulls the slices from the centre # `hole` : Sets the size of the inner hole # `textposition` Sets the position of the legends for each slice ('outside'|'inside') # `textinfo` : Sets the information to be displayed on the legends # In[7]: pie.iplot(kind='pie',labels='labels',values='values',pull=.2,hole=.2, colorscale='blues',textposition='outside',textinfo='value+percent') # ## Open, High, Low, Close Data Generation # **datagen** now includes a method `ohlc` to generate Open, High, Low, Close data # In[8]: ohlc=cf.datagen.ohlc() ohlc.head() # In[9]: ohlc.iplot() # ## Candle and Bar Charts # Of course *OHLC* can always be better appreciated with candle and bar (OHLC) charts. # # You can now achieve this with `kind=candle` and `kind=ohlc` in `iplot`. # In[10]: ohlc.iplot(kind='ohlc') # In[11]: ohlc.head().iplot(kind='candle',theme='ggplot',up_color='blue',down_color='pink') # ## Secondary Axis # You can now use `secondary_y` in `iplot` to indicate if a given trace should be plotted in a secondary (right) axis # In[12]: lines=cf.datagen.lines(4,mode='abc') # We multiply 2 of the 4 lines by 100 lines[['c','d']]=lines[['c','d']]*100 #If we plot the resulting DataFrame then we get the following chart lines.iplot() # In[13]: # We can however move those lines to the secondary axis lines.iplot(kind='lines',secondary_y=['c','d']) # ## Logarithmic Charts # `iplot` now support logarithmic charts for boths **Y** and **X** axis, by using `logy=True` and `logx=True` respectively # In[14]: df=pd.DataFrame([x**2] for x in range(100)) # In[15]: df.iplot() # In[16]: df.iplot(logy=True) # ## Support for Multi-Index DataFrames # In[17]: ix3 = pd.MultiIndex.from_arrays([['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'], ['foo', 'foo', 'bar', 'bar', 'foo', 'foo', 'bar', 'bar']], names=['letter', 'word']) df3 = pd.DataFrame({'data1': [3, 2, 4, 3, 2, 4, 3, 2], 'data2': [6, 5, 7, 5, 4, 5, 6, 5]}, index=ix3) gp3 = df3.groupby(level=('letter', 'word')) means = gp3.mean() # In[18]: means # In[19]: means.iplot(kind='bar') # ## Error Bars # You can now add error bars in *scatter*,*bar* and *line* charts by passing the errors to `error_y` and `error_x` to `iplot`. # In[20]: cf.datagen.lines(1,5).iplot(kind='bar',error_y=[1,2,3.5,2,2]) # There are more type of error bars which can be set with `error_type`: `data`,`constant`,`percent`,`sqrt` # To see more info regarding each of them check `help(cf.ErrorY)` # In[21]: # 20% error bars cf.datagen.bars().iplot(kind='bar',error_y=20,error_type='percent',error_color='red') # ### Continuous Error Bars # Continous error bars (shades) can also be plotted with `error_type='continuous'` or `error_type='continuous_percent'` # # In[22]: # Line chart with a tolerance of 20% cf.datagen.lines(1).iplot(kind='scatter',error_y=20,error_type='continuous_percent') # In[23]: # Line chart with an error of 10 cf.datagen.lines(1).iplot(kind='scatter',error_y=10,error_type='continuous',color='blue') # ## Technical Analysis (Beta) # Cufflinks v0.6.0 includes a set of Technical Analysis studies for financial data. # # These are accessed with a new method called **ta_plot**. # #### Simple Moving Averages # One or more moving averages can be added to a time series. # In[24]: cf.datagen.lines(1,500).ta_plot(study='sma',periods=[13,21,55],title='Simple Moving Averages') # ### Bollinger Bands # These are a volatility indicator - and tell us the number the distance of the current value (at a given point) to the N number of standard deviations. # # In[25]: cf.datagen.lines(1,200).ta_plot(study='boll',periods=14,title='Bollinger Bands') # ### Relative Strength Index (RSI) # The relative strength index tells the historical **strength** or **weakness** of the historial price. # In[52]: cf.datagen.lines(1,200).ta_plot(study='rsi',periods=14,title='Relative Strength Index') # ### Moving Average Convergence Divergence (MACD) # A trend-following momentum indicator that shows the relationship between two moving averages of prices. # In[53]: cf.datagen.lines(1,200).ta_plot(study='macd',fast_period=12,slow_period=26, signal_period=9) # In[ ]: