%matplotlib inline import numpy as np from numpy.random import randn import pandas as pd from scipy import stats import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns sns.set_palette("deep", desat=.6) sns.set_context(rc={"figure.figsize": (8, 4)}) np.random.seed(9221999) data = np.random.choice(['a','b','c'], size=100) sns.barplot(data); data = randn(100) sns.distplot(data,bins=30); sns.tsplot(data); c1, c2 = sns.color_palette("Set1", 2) dist1, dist2= stats.norm(0, 1).rvs((2, 100)) dist2 = pd.Series(dist2 + 2, name="dist2") sns.kdeplot(dist1, shade=True, color=c1) sns.kdeplot(dist2, shade=True, color=c2); mpl.rc("figure", figsize=(8, 8)) data = np.random.multivariate_normal([0, 0], [[1, 2], [2, 20]], size=1000) data = pd.DataFrame(data, columns=["X", "Y"]) sns.kdeplot(data.X, data.Y, shade=True); x = stats.gamma(3).rvs(5000) y = stats.gamma(5).rvs(5000) with sns.axes_style("white"): sns.jointplot(x, y, kind="kde"); data = [randn(100), randn(100) + 1] sns.boxplot(data); sns.violinplot(data, color="pastel"); tips.head() tips = sns.load_dataset("tips") sns.lmplot(x="total_bill", y="tip", hue='sex',col='sex',data=tips,fit_reg=True); titanic = sns.load_dataset("titanic").dropna() attention = sns.load_dataset("attention") sns.set_context(rc={"figure.figsize": (8, 8)}) sns.corrplot(titanic[[0,1,3,4,5,6]]);