#!/usr/bin/env python # coding: utf-8 # # Intro # This notebook demonstrates basic usage of the firefly_client API. # # Note that it may be necessary to wait for some cells (like those displaying an image) to complete before executing later cells. # ## Setup # Imports for firefly_client: # In[ ]: from firefly_client import FireflyClient import astropy.utils.data using_lab = False #url = 'https://irsa.ipac.caltech.edu/irsaviewer' url = 'http://127.0.0.1:8080/firefly' #FireflyClient._debug= True # The firefly_client needs to connect to a firefly server. In this example, we use the IRSA Viewer application for the server: # Instantiate `FireflyClient` using the URL above: # In[ ]: fc = FireflyClient.make_lab_client() if using_lab else FireflyClient.make_client(url) # ## Download Sample Data # For the following example, we download a sample image and table by using astropy (it's used only for convenience, firefly_client itself does not depend on astropy): # Download a cutout of a WISE band as 1 FITS image: # In[ ]: image_url = ('http://irsa.ipac.caltech.edu/ibe/data/wise/allsky/4band_p1bm_frm/6a/02206a' + '/149/02206a149-w1-int-1b.fits?center=70,20&size=200pix') filename = astropy.utils.data.download_file(image_url, cache=True, timeout=120) # Download a 2MASS catalog using an IRSA VO Table Access Protocol ([TAP](https://irsa.ipac.caltech.edu/docs/program_interface/astropy_TAP.html)) search: # In[ ]: table_url = ("http://irsa.ipac.caltech.edu/TAP/sync?FORMAT=IPAC_TABLE&" + "QUERY=SELECT+*+FROM+fp_psc+WHERE+CONTAINS(POINT('J2000',ra,dec)," + "CIRCLE('J2000',70.0,20.0,0.1))=1") tablename = astropy.utils.data.download_file(table_url, timeout=120, cache=True) # ## Display Tables and Catalogs # Instantiating FireflyClient should open a browser to the firefly server in a new tab. You can also achieve this using the following method. The browser open only works when running the notebook locally, otherwise a link is displayed. # In[ ]: # localbrowser, browser_url = fc.launch_browser() # If it does not open automatically, try using the following command to display a web browser link to click on: # In[ ]: fc.display_url() # Alternatively, uncomment the lines below (while commenting out the 2 lines above) to display the browser application in the notebook: # In[ ]: # from IPython.display import IFrame # print('url: %s' % fc.get_firefly_url()) # IFrame(fc.get_firefly_url(), 1100, 1000) # The current example involves 2 images in FITS format to be viewed through the chosen browser, both in different ways. # For the 1st method, upload a local file to the server and then display it: # In[ ]: imval = fc.upload_file(filename) status = fc.show_fits(file_on_server=imval, plot_id="wise-cutout", title='WISE Cutout') # For the 2nd method, pull an image directly from a URL: # In[ ]: status = fc.show_fits(file_on_server=None, plot_id="wise-fullimage", URL='http://irsa.ipac.caltech.edu/ibe/data/wise/allsky/4band_p1bm_frm/6a/02206a' + '/149/02206a149-w1-int-1b.fits') # Upload a catalog table (with coordinates) to the server so it will overlay the image with markers by default. Note that markers can be visible on both "wise-cutout" and "wise-fullimage" since they would include the same field of view: # In[ ]: file= fc.upload_file(tablename) status = fc.show_table(file, tbl_id='tablemass', title='My 2MASS Catalog', page_size=50) # Add an xy plot using the uploaded table data: # In[ ]: status = fc.show_xyplot(tbl_id='tablemass', xCol='j_m', yCol='h_m-k_m') # Alternatively, more generic method show_chart() can be used to create the same plot # In[ ]: # trace0 = {'tbl_id': 'tablemass', 'x': "tables::j_m", 'y': "tables::h_m-k_m", # 'type' : 'scatter', 'mode': 'markers'} # status = fc.show_chart(data=[trace0]) # Zoom into the full image by a factor of 2 (note the `plot_id` parameter we used earlier) # In[ ]: status = fc.set_zoom('wise-fullimage', 2) # Pan the full image to center on a given celestial coordinate: # In[ ]: status = fc.set_pan('wise-fullimage', x=70, y=20, coord='J2000') # Set the stretch for the full image based on IRAF zscale interval with a linear algorithm: # In[ ]: status = fc.set_stretch('wise-fullimage', stype='zscale', algorithm='linear') # Change color of the image: # In[ ]: status = fc.set_color('wise-fullimage', colormap_id=6, bias=0.6, contrast=1.5) # Add region data to the cutout image (2 areas to begin with): # In[ ]: my_regions= ['image;polygon 125 25 160 195 150 150 #color=cyan', 'icrs;circle 69.95d 20d 30i # color=orange text={region 5/7}'] status = fc.add_region_data(region_data=my_regions, region_layer_id='layer1', plot_id='wise-cutout') # Remove the second region whlie keeping the first one visible: # In[ ]: fc.remove_region_data(region_data=my_regions[1], region_layer_id='layer1') # In[ ]: