#!/usr/bin/env python # coding: utf-8 # # MuMoT test notebook for using letters from the Greek alphabet # This notebook tests some basic functionality of MuMoT when reactants and rates are Greek letters (with Greek indices). The analysis is based on the honeybee stop-signal model (Seeley et al. (2012) & Pais et al. (2013)) studied in more detail in the user manual. # In[ ]: import mumot mumot.__version__ # In[ ]: model1 = mumot.parseModel(r""" U -> \alpha : g_1 U -> \Gamma_\beta : g_2 \alpha -> U : a_1 \Gamma_\beta -> U : a_2 \alpha + U -> \alpha + \alpha : r_1 \Gamma_\beta + U -> \Gamma_\beta + \Gamma_\beta : r_2 \alpha + \Gamma_\beta -> \alpha + U : \sigma \alpha + \Gamma_\beta -> \Gamma_\beta + U : \sigma """) # In[ ]: int1 = model1.integrate(showStateVars=['\\alpha', '\\Gamma_\\beta', 'U'], initWidgets={'maxTime':[10,5,50,1], 'initialState':{'U': [0.5,0,1,0.01],'\\Gamma_\\beta': [0.5,0,1,0.1],'\\alpha': [0,0,1,0.1]}, 'g_{1}':[0.5,0,1,0.01]}, conserved=True) # In[ ]: int1.showLogs() # In[ ]: model2 = model1.substitute('a_1 = 1/v_1, a_2 = 1/v_2, g_1 = v_1, g_2 = v_2, r_1 = v_1, r_2 = v_2') # In[ ]: model3 = model2.substitute('v_1 = \\mu + \\Delta/2, v_2 = \\mu - \\Delta/2') # In[ ]: model3.showODEs() # In[ ]: model3.show() # In[ ]: model4 = model3.substitute('U = N - \\alpha - \\Gamma_\\beta') # In[ ]: modelBifCont1 = model4.bifurcation('\\sigma','\\alpha-\\Gamma_\\beta', initWidgets={'mu':[3, 1, 5, 0.5], 'Delta':[0, 0, 2, 0.1], 'initBifParam':[4.8, 3, 5, 0.1]}, choose_xrange=[0, 5]) # In[ ]: modelStreamCont1 = model4.stream('\\alpha', '\\Gamma_\\beta',fontsize=25, xlab=r'this is the x-label', showFixedPoints=False, showNoise=False) # In[ ]: model4.SSA() # In[ ]: model4.showODEs(method='vanKampen') # In[ ]: model4.showMasterEquation() # In[ ]: model4.showFokkerPlanckEquation() # In[ ]: model4.showVanKampenExpansion()