import numpy as np z = [1,2,3,4,5,6,7,8,9.3,10.6] # This is a list z_array = np.array(z) z_array z_array.sum() z_array.min() z_array.max() np.max(z_array) np.array(['a','b','c']) np.array([1,2,3,6,8,29]) y = [1,3,'a'] np.array(y) np.array([1,3,'a'], dtype='object') np.arange(10) np.linspace(start=0, stop=1, num=11) # or np.linspace(0, 1, 11) np.linspace(start = 0, stop = 2*np.pi, num = 10) np.array([[1,3,5,6],[4,3,9,7]]) np.zeros(10) np.zeros((10,10)) np.ones((3,4)) np.eye(4) a = [1,2,3,4,5,6,7,8] b = ['a','b','c','d','3'] np.array(a) np.array(b) rng = np.random.RandomState(35) # set seed rng.randint(0, 10, (3,4)) rng.random_sample((5,2)) A = rng.normal(0,1,(4,5)) A.shape A.size np.zeros_like(A) B = rng.normal(0, 1, (4,)) B A A[:,0] A[3,:] A[:2,:2] A = rng.randn(3,5) A A + 10 B = rng.randint(0,10, (3,5)) B A + B A * B A @ np.transpose(B) np.transpose(A) @ B D = rng.randint(0,5, (4,4)) D D.reshape(8,2) D.reshape(1,16) e = np.arange(20) E = e.reshape(5,4) E A = rng.normal(0, 1, (4,2)) A A.sum() A.sum(axis=0) A.sum(axis=1) A.min(axis = 0) A.max(axis = 0) A.argmin(axis=0) A.argmax(axis=0) a = rng.randint(0,10, 8) a np.sort(a) np.argsort(a) a[np.argsort(a)] ind_2nd_smallest = np.argsort(a)[1] a[ind_2nd_smallest] ind_3rd_largest = np.argsort(a)[-3] a[ind_3rd_largest] m = np.array(['Aram','Raymond','Elizabeth','Donald','Harold']) np.sort(m) m.sort() m A = rng.randint(0,5, (3,5)) B = rng.randint(0,5, (3,5)) print('A = ', A) print('B = ', B) np.hstack((A,B)) np.vstack((A,B)) A < 0 A[A<0] np.sum(A<0) A[0,:] A1 = A A1[0,0] = 4 A[0,0] A1 = A.copy() A1[0,0] = 6 A[0,0] A[:2,:2] = np.eye(2) A A = rng.randint(0,5, (5,1)) A A.flatten() A.ravel() A = rng.normal(0,1,(4,5)) B = rng.normal(0,1,5) A.shape B.shape A - B B[np.newaxis,:].shape B[:,np.newaxis].shape d = rng.random_sample((10,2)) d d.shape d[np.newaxis,:,:] d[np.newaxis,:,:].shape d[:, np.newaxis,:] d[:,np.newaxis,:].shape dist_sq = np.sum((d[:,np.newaxis,:] - d[np.newaxis,:,:]) ** 2) dist_sq.shape dist_sq (d[:,np.newaxis,:] - d[np.newaxis,:,:]).shape dist_sq = np.sum((d[:,np.newaxis,:] - d[np.newaxis,:,:]) ** 2, axis=2) dist_sq dist_sq.shape dist_sq.diagonal()