#!/usr/bin/env python # coding: utf-8 # In[8]: import pandas as pd from yellowbrick.classifier.confusion_matrix import * from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import LabelEncoder # In[9]: df = pd.read_csv('examples/data/occupancy/occupancy.csv') features = ["temperature", "relative humidity", "light", "C02", "humidity"] target = "occupancy" X = df[features] y = df[target] classes = ["unoccupied", "occupied"] le = LabelEncoder() le.fit(classes) X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2) viz = ConfusionMatrix(LogisticRegression(), classes=classes, label_encoder =le) viz.fit(X_train, y_train) viz.score(X_test, y_test) viz.poof() # In[11]: digits = load_digits() X = digits.data y = digits.target X_train, X_test, y_train, y_test = train_test_split(X,y, test_size =0.2, random_state=11) X_train = X_train X_test = X_test y_train = y_train y_test = y_test model = LogisticRegression() classes = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'] mapping = {'zero': '0', 'one': '1', 'two': '2', 'three': '3', 'four': '4', 'five': '5', 'six': '6', 'seven': '7', 'eight': '8', 'nine': '9'} cm = ConfusionMatrix(model, classes=classes, label_encoder = mapping) cm.fit(X_train, y_train) cm.score(X_test, y_test) cm.poof()