import pandas as pd import matplotlib.pyplot as plt url='https://raw.githubusercontent.com/JJTorresDS/ds-data-sources/main/stocks.csv' df= pd.read_csv(url,index_col='formatted_date',parse_dates=['formatted_date']) df df.corr() import seaborn as sns sns.heatmap(df.corr(), cmap='jet') df.isnull().sum() # graficando la serie de tiempo df.plot(kind='line', figsize=(12,8), xlabel='Fecha', ylabel='Precio', title='Acciones en el tiempo') df_melt=pd.melt(df) df_melt # Con atipicos plt.figure(figsize=(12,6)) sns.boxplot(data=df) # Sin atipicos plt.figure(figsize=(12,6)) sns.boxplot(data=df, showfliers=False) # Cambio porcentual df.pct_change().plot(kind='line', figsize=(15,6),xlabel='Fecha',ylabel='Cambio %') plt.legend(fontsize='xx-large', ncol=4, loc='lower left')