using LinearAlgebra using TypedPolynomials using MacaulayMatrix using JuMP using MultivariateMoments @polyvar x y z system = [ x^2 - x*y + z, 2y^3 - 2x*y^2 - 3x * y, z^3 - x*y*z - 2, ] sols = solve_system(system, column_maxdegree = 6) nothing # hide sols solver = Iterator(system, MacaulayMatrix.Solver()) step!(solver) solver using Plots plot(saturated_dependence(solver)) step!(solver) plot(saturated_dependence(solver)) step!(solver) plot(saturated_dependence(solver)) step!(solver) plot(saturated_dependence(solver)) solver = Iterator(system, MacaulayMatrix.Solver()) step!(solver) step!(solver, FirstStandardNonSaturated(10)) plot(saturated_dependence(solver)) step!(solver, FirstStandardNonSaturated(10)) plot(saturated_dependence(solver)) step!(solver, FirstStandardNonSaturated(10)) plot(saturated_dependence(solver)) step!(solver, FirstStandardNonSaturated(10)) plot(saturated_dependence(solver)) import Clarabel solver = Clarabel.Optimizer M = moment_matrix(system, solver, 3) nothing # hide atomic_measure(M, 1e-4, ShiftNullspace()) M = moment_matrix(system, solver, 4) nothing # hide atomic_measure(M, 1e-4, ShiftNullspace()) M = moment_matrix(system, solver, 5) nothing # hide atomic_measure(M, 1e-4, ShiftNullspace())