using DFTK using LinearAlgebra using ForwardDiff # Construct PlaneWaveBasis given a particular electric field strength # Again we take the example of a Helium atom. function make_basis(ε::T; a=10., Ecut=30) where {T} lattice=T(a) * I(3) # lattice is a cube of $a$ Bohrs # Helium at the center of the box atoms = [ElementPsp(:He, psp=load_psp("hgh/lda/He-q2"))] positions = [[1/2, 1/2, 1/2]] model = model_DFT(lattice, atoms, positions, [:lda_x, :lda_c_vwn]; extra_terms=[ExternalFromReal(r -> -ε * (r[1] - a/2))], symmetries=false) PlaneWaveBasis(model; Ecut, kgrid=[1, 1, 1]) # No k-point sampling on isolated system end # dipole moment of a given density (assuming the current geometry) function dipole(basis, ρ) @assert isdiag(basis.model.lattice) a = basis.model.lattice[1, 1] rr = [a * (r[1] - 1/2) for r in r_vectors(basis)] sum(rr .* ρ) * basis.dvol end # Function to compute the dipole for a given field strength function compute_dipole(ε; tol=1e-8, kwargs...) scfres = self_consistent_field(make_basis(ε; kwargs...); tol) dipole(scfres.basis, scfres.ρ) end; polarizability_fd = let ε = 0.01 (compute_dipole(ε) - compute_dipole(0.0)) / ε end polarizability = ForwardDiff.derivative(compute_dipole, 0.0) println() println("Polarizability via ForwardDiff: $polarizability") println("Polarizability via finite difference: $polarizability_fd")