#!/usr/bin/env python # coding: utf-8 # In[46]: from gensim.models import KeyedVectors # We will load only first 1000 (top 1000) vectors from python fasttext (128) model # In[47]: model = KeyedVectors.load_word2vec_format("../model.vec", binary=False, limit=1000) # In case you are loading GloVe embeddings, you need to convert it first # In[ ]: tmpfile=get_tmpfile("source2vec") glove2word2vec(datapath("../glove_model.txt"), tmpfile) model = KeyedVectors.load_word2vec_format(tmpfile, binary=False, limit=1000) # Now we can do fancy staff # In[48]: model.most_similar("for") # In[49]: model.most_similar_cosmul("for") # In[50]: model.doesnt_match(["for", "i", "a"]) # In[51]: model.similarity("for", "i") # In[52]: model.similar_by_word("for") # Raw vector values # In[53]: for word in model.vocab: print(word, ":", model[word]) break # only first one now