#!/usr/bin/env python # coding: utf-8 # In[ ]: import tensorflow as tf # Basic math operations: tf.add() sum tf.subtract() substraction tf.multiply() multiplication tf.div() division tf.mod() module tf.abs() absolute value tf.negative() negative value tf.sign() return sign tf.reciprocal() reciprocal tf.square() square tf.round() nearest intiger tf.sqrt() square root tf.pow() power tf.exp() exponent tf.log() logarithm tf.maximum() maximum tf.minimum() minimum tf.cos() cosine tf.sin() sine # Basic operations on tensors: tf.string_to_number() converts string to numeric type tf.cast() casts to new type tf.shape() returns shape of tensor tf.reshape() reshapes tensor tf.diag() creates tensor with given diagonal values tf.zeros() creates tensor with all elements set to zero tf.fill() creates tensor with all elements set given value tf.concat() concatenates tensors tf.slice() extracts slice from tensor tf.transpose() transpose the argument tf.matmul() matrices multiplication tf.matrix_determinant() determinant of matrices tf.matrix_inverse() computes inverse of matrices # Control Flow: tf.while_loop() repeat body while condition true tf.case() case operator tf.count_up_to() incriments ref untill limit tf.tuple() groups tensors together # Logical/Comparison Operators: tf.equal() returns truth value element-wise tf.not_equal() returns truth value of X!=Y tf.less() returns truth value of X<Y tf.less_equal() returns truth value of X<=Y tf.greater() returns truth value of X>Y tf.greater_equal() returns truth value of X>=Y tf.is_nan() returns which elements are NaN tf.logical_and() returns truth value of ‘AND’ for given tensors tf.logical_or() returns truth value of ‘OR’ for given tensors tf.logical_not() returns truth value of ‘NOT’ for given tensors tf.logical_xor() returns truth value of ‘XOR’ for given tensors # Working with Images: tf.image.decode_image() converts image to tensor type uint8 tf.image.resize_images() resize images tf.image.resize_image_with_crop_or_pad() resize image by cropping or padding tf.image.flip_up_down() flip image horizontally tf.image.rot90() rotate image 90 degrees counter-clockwise tf.image.rgb_to_grayscale() converts image from RGB to grayscale tf.image.per_image_standardization() scales image to zero mean and unit norm # Neural Networks: tf.nn.relu() rectified linear activation function tf.nn.softmax() softmax activation function tf.nn.sigmoid() sigmoid activation function tf.nn.tanh() hyperbolic tangent activation function tf.nn.dropout dropout tf.nn.bias_add adds bias to value tf.nn.all_candidate_sampler() set of all classes tf.nn.weighted_moments() returns mean and variance tf.nn.softmax_cross_entropy_with_logits() softmax cross entropy tf.nn.sigmoid_cross_entropy_with_logits() sigmoid cross entropy tf.nn.l2_normalize() normalization using L2 Norm tf.nn.l2_loss() L2 loss tf.nn.dynamic_rnn() RNN specified by given cell tf.nn.conv2d() 2D convolutions given 4D input tf.nn.conv1d() 1D convolution given 3D input tf.nn.batch_normalization() batch normalization tf.nn.xw_plus_b() computes matmul(x,weights)+biases # High level Machine Learning: tf.contrib.keras Keras API as high level API for TensorFlow tf.contrib.layers.one_hot_column() one hot encoding tf.contrib.learn.LogisticRegressor() logistic regression tf.contrib.learn.DNNClassifier() DNN classifier tf.contrib.learn.DynamicRnnEstimator() Rnn Estimator tf.contrib.learn.KMeansClustering() K-Means Clusstering tf.contrib.learn.LinearClassifier() linear classifier tf.contrib.learn.LinearRegressor() linear regressor tf.contrib.learn.extract_pandas_data() extract data from Pandas dataframe tf.contrib.metrics.accuracy() accuracy tf.contrib.metrics.auc_using_histogram() AUC tf.contrib.metrics.confusion_matrix() confusion matrix tf.contrib.metrics.streaming_mean_absolute_error() mean absolute error tf.contrib.rnn.BasicLSTMCell() basic lstm cell tf.contrib.rnn.BasicRNNCell() basic rnn cell # Placeholders and Variables: tf.placeholder() defines placeholder tf.Variable(tf.random_normal([3, 4], stddev=0.1) defines variable tf.Variable(tf.zeros([50]), name=’x’) defines variable tf.global_variables_initializer() initialize global variables tf.local_variables_initializer() initialize local variables ## pin variable to CPU with tf.device(“/cpu:0”): v = tf.Variable() ## pin variable to GPU with tf.device(“/gpu:0”): v = tf.Variable() ## run session sess = tf.Session() sess.run() sess.close() ## run session(2) with tf.Session() as session: session.run() # Saving and restoring variables. saver=tf.train.Saver() saver.save(sess,’file_name’) saver.restore(sess,’file_name’) # Working with Data: tf.decode_csv() converts csv to tensors tf.read_file() reads file tf.write_file() writes to file tf.train.batch() creates batches of tensors