#!/usr/bin/env python # coding: utf-8 # # Video # # blah ... # # second try # # Data Formats # # Data was saved to a `dict` with each key being a `list` full of `namedtuples`. The `Data_ts` hold the data plus a time stamp since the start of the data. # # - `imu`: accel, mag, gyros # - `camera`: image bytes # - `lidar`: array of (angle, range,) for each point # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') from matplotlib import pyplot as plt import numpy as np # In[2]: from collections import namedtuple import time import pickle import cv2 Data_ts = namedtuple('Data_ts', 'data timestamp') # In[4]: data = pickle.load( open( "data/video-imu-move.pickle", "rb" ) ) # In[10]: imgs = [np.frombuffer(x[0], dtype=np.uint8).reshape((480,640)) for x in data['camera']] itime = [x[1] for x in data['camera']] # In[15]: print('Images found: {}'.format(len(imgs))) plt.imshow(imgs[0], cmap='gray'); # In[30]: class VO(object): def featureDetection(self): thresh = dict(threshold=25, nonmaxSuppression=True); fast = cv2.FastFeatureDetector_create(**thresh) return fast def getK(self): return np.array([[7.188560000000e+02, 0, 6.071928000000e+02], [0, 7.188560000000e+02, 1.852157000000e+02], [0, 0, 1]]) def getAbsoluteScale(self, f0, f1): x_pre, y_pre, z_pre = f0 x , y , z = f1 scale = np.sqrt((x-x_pre)**2 + (y-y_pre)**2 + (z-z_pre)**2) return x, y, z, scale def featureTracking(self, img_1, img_2, p1): lk_params = dict( winSize = (21,21), maxLevel = 3, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 30, 0.01)) p2, st, err = cv2.calcOpticalFlowPyrLK(img_1, img_2, p1, None, **lk_params) st = st.reshape(st.shape[0]) ##find good one p1 = p1[st==1] p2 = p2[st==1] return p1,p2 def run(self, images): #initialization # ground_truth =getTruePose() img_1 = images[0] img_2 = images[0] if len(img_1) == 3: gray_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2GRAY) gray_2 = cv2.cvtColor(img_2, cv2.COLOR_BGR2GRAY) else: gray_1 = img_1 gray_2 = img_2 #find the detector detector = self.featureDetection() kp1 = detector.detect(img_1) p1 = np.array([kp.pt for kp in kp1],dtype='float32') p1, p2 = self.featureTracking(gray_1, gray_2, p1) #Camera parameters fc = 718.8560 pp = (640/2, 480/2) # K = getK() E, mask = cv2.findEssentialMat(p2, p1, fc, pp, cv2.RANSAC,0.999,1.0); _, R, t, mask = cv2.recoverPose(E, p2, p1,focal=fc, pp = pp); #initialize some parameters MAX_FRAME = 100 MIN_NUM_FEAT = 50 preFeature = p2 preImage = gray_2 R_f = R t_f = t maxError = 0 ret_pos = [] for numFrame in range(2, MAX_FRAME): if numFrame % 20 == 0: print(numFrame) if (len(preFeature) < MIN_NUM_FEAT): feature = detector.detect(preImage) preFeature = np.array([ele.pt for ele in feature],dtype='float32') print(">> features found: ", len(preFeature)) if len(preFeature) < MIN_NUM_FEAT: continue curImage_c = images[numFrame] if len(curImage_c) == 3: curImage = cv2.cvtColor(currImage_c, cv2.COLOR_BGR2GRAY) else: curImage = curImage_c kp1 = detector.detect(curImage); preFeature, curFeature = self.featureTracking( preImage, curImage, preFeature) E, mask = cv2.findEssentialMat( curFeature, preFeature, fc, pp, cv2.RANSAC, 0.999, 1.0); # print(E) _, R, t, mask = cv2.recoverPose( E, curFeature, preFeature, focal=fc, pp = pp); # truth_x, truth_y, truth_z, absolute_scale = getAbsoluteScale( # ground_truth[numFrame-1], ground_truth[numFrame]) # if numFrame % 20 == 0: # print('scale', absolute_scale) absolute_scale = 1.0 if absolute_scale > 0.1: t_f = t_f + absolute_scale*R_f.dot(t) R_f = R.dot(R_f) else: print("crap ... bad scale:", absolute_scale) preImage = curImage preFeature = curFeature # ret_pos.append((t_f[0], t_f[2],)) ret_pos.append(t_f) return ret_pos # In[31]: vo = VO() pos = vo.run(imgs) print('len(pos) = {}'.format(len(pos))) # In[32]: x = [float(x[0]) for x in pos] y = [float(x[1]) for x in pos] z = [float(x[2]) for x in pos] # In[33]: plt.figure() for i in [x,y,z]: plt.plot(i) plt.grid(True) plt.title('Movement') # In[34]: plt.plot(x,y) plt.grid(True) plt.title('Path') # In[ ]: