#!/usr/bin/env python # coding: utf-8 # In[ ]: # ## Quadcopter # # The quadcopter is a rigid body with 6 degrees of freedom. It can move in the x, y, and z directions, and it can rotate about the x, y, and z axes. The motion of the quadcopter is governed by the following equations: # # $$ # \begin{aligned} # \dot{x} &= v_x \\ # \dot{y} &= v_y \\ # \dot{z} &= v_z \\ # \dot{v}_x &= \frac{1}{m}(T_1 - T_3) \\ # \dot{v}_y &= \frac{1}{m}(T_2 - T_4) \\ # \dot{v}_z &= \frac{1}{m}(T_3 + T_4 - T_1 - T_2) \\ # \dot{\theta}_x &= \omega_x \\ # \dot{\theta}_y &= \omega_y \\ # \dot{\theta}_z &= \omega_z \\ # \dot{\omega}_x &= -\frac{k_x}{I_x}(\theta_x - \theta_r) \\ # \dot{\omega}_y &= -\frac{k_y}{I_y}(\theta_y - \theta_r) \\ # \dot{\omega}_z &= -\frac{k_z}{I_z}(\theta_z - \theta_r) # \end{aligned} # $$ # # where: # # - x, y, and z are the position of the quadcopter in the global coordinate system # - $\theta_i$ are the angles of rotation of the quadcopter about the x, y, and z axes # - $\omega_i$ are the angular velocities of the quadcopter about the x, y, and z axes # - $T_i$ are the thrust forces on the four rotors # - $k_i$ are the stiffness coefficients of the rotors # - $\theta_r$ is the desired angle of rotation of the rotors # In[ ]: