#importing modules from __future__ import division import math #Variable declaration k = 1.38*10**-23; #Boltzmann constant(J/K) e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV) g1 = 2; #The degeneracy of ground state g2 = 8; #The degeneracy of excited state delta_E = 10.2; #Energy of excited state above the ground state(eV) T = 6000; #Temperature of the state(K) #Calculation D_ratio = g2/g1; #Ratio of degeneracy of states x = k*T/e; N_ratio = D_ratio*math.exp(-delta_E/x); #Ratio of occupancy of the excited to the ground state #Result print "The ratio of occupancy of the excited to the ground state is",N_ratio a = 10/2; #enegy of 10 bosons is E = (10*pi**2*h**2)/(2*m*a**2) = (5*pi**2*h**2)/(m*a**2) #Result print "enegy of 10 bosons is E = ",int(a),"(pi**2*h**2)/(m*a**2)" #importing modules import math #Variable declaration n1=1; #1st level n2=2; #2nd level n3=3; #3rd level n4=4; #4th level n5=5; #5th level #Calculation #an energy level can accomodate only 2 fermions. hence there will be 2 fermions in each level #thus total ground state energy will be E = (2*E1)+(2*E2)+(2*E3)+(2*E4)+E5 #let X = ((pi**2)*(h**2)/(2*m*a**2)). E = X*((2*n1**2)+(2*n2**2)+(2*n3**2)+(2*n4**2)+(n5**2)) A = (2*n1**2)+(2*n2**2)+(2*n3**2)+(2*n4**2)+(n5**2); #thus E = A*X #Result print "the ground state energy of the system is",A,"(pi**2)*(h**2)/(2*m*a**2)" #importing modules import math from __future__ import division #Variable declaration e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV) N_A = 6.02*10**23; #Avogadro's number h = 6.626*10**-34; #Planck's constant(Js) me = 9.1*10**-31; #Mass of electron(kg) rho = 10.5; #Density of silver(g/cm) m = 108; #Molecular mass of silver(g/mol) #Calculation N_D = rho*N_A/m; #Number density of conduction electrons(per cm**3) N_D = N_D*10**6; #Number density of conduction electrons(per m**3) E_F = ((h**2)/(8*me))*(3/math.pi*N_D)**(2/3); #fermi energy(J) E_F = E_F/e; #fermi energy(eV) E_F = math.ceil(E_F*10**2)/10**2; #rounding off the value of E_F to 2 decimals #Result print "The number density of conduction electrons is",N_D, "per metre cube" print "The Fermi energy of silver is",E_F, "eV" #importing modules import math from __future__ import division #Variable declaration N_A = 6.02*10**23; #Avogadro's number k = 1.38*10**-23; #Boltzmann constant(J/K) T = 293; #Temperature of sodium(K) E_F = 3.24; #Fermi energy of sodium(eV) e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV) #Calculation C_v = math.pi**2*N_A*k**2*T/(2*E_F*e); #Molar specific heat of sodium(per mole) C_v = math.ceil(C_v*10**2)/10**2; #rounding off the value of C_v to 2 decimals #Result print "The electronic contribution to molar specific heat of sodium is",C_v, "per mole" #importing modules import math from __future__ import division #Variable declaration e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV) h = 6.626*10**-34; #Planck's constant(Js) m = 9.1*10**-31; #Mass of the electron(kg) N_D = 18.1*10**28; #Number density of conduction electrons in Al(per metre cube) #Calculation E_F = h**2/(8*m)*(3/math.pi*N_D)**(2/3); #N_D = N/V. Fermi energy of aluminium(J) E_F = E_F/e; #Fermi energy of aluminium(eV) E_F = math.ceil(E_F*10**3)/10**3; #rounding off the value of E_F to 3 decimals Em_0 = 3/5*E_F; #Mean energy of the electron at 0K(eV) Em_0 = math.ceil(Em_0*10**3)/10**3; #rounding off the value of Em_0 to 3 decimals #Result print "The Fermi energy of aluminium is",E_F, "eV" print "The mean energy of the electron is",Em_0, "eV"