# Illustration 2.1 # solution import math #***Data***# # a = O2 & b = CO Dab = 1.87*10**(-5);#[square m/s] Pt = 10**5;#[N/square m] z = 0.002;#[m] R = 8314;#[Nm/kmol] T = 273;#[K] Pa1 = 13*10.0**(3);#[N/square m] Pb1 = 10**(5)-13*10**(3);#[N/square m] Pa2 = 6500;#[N/square m] Pb2 = 10**(5)-6500.0;#[N/square m] #********# # Calculation from Eqn. 2.30 Pbm = (Pb1-Pb2)/math.log(Pb1/Pb2);#[N/square m] Na = Dab*Pt*(Pa1-Pa2)/(R*T*z*Pbm);#[kmol/square m.s] print" Rate of diffusion of oxygen is",round(Na,7),"kmol/square m.sec " # Illustration2.2 # solution import math #***Data***# Pt = 10**5.0;#[N/square m] z = 0.002;#[m] R = 8314.0;#[Nm/kmol] T = 273;#[K] #a = O2 b = CH4 c = H2 Pa1 = 13*10**(3);#[N/square m] Pb1 = 10**(5)-13*10**(3);#[N/square m] Pa2 = 6500.0;#[N/square m] Pb2 = 10.0**(5)-6500;#[N/square m] Dac = 6.99*10**(-5);#[N/square m] Dab = 1.86*10.0**(-5);#[N/square m] #*******# # Calculation from Eqn. 2.30 Pbm = (Pb1-Pb2)/math.log(Pb1/Pb2);#[N/square m] Yb_prime = 2.0/(2+1); Yc_prime = 1-Yb_prime; Dam = 1.0/((Yb_prime/Dab)+(Yc_prime/Dac));#[square m.s] Na = Dam*(Pa1-Pa2)*Pt/(R*T*z*Pbm);#[kmol/square m.s] print "Rate of diffusion is",round(Na,7),"kmol/square m.sec" # Illustration2.3 import math # solution #***Data***# # a = C2H5OH b = air Pt = 101.3*10**(3);#[N/square m] T = 273.0 ;#[K] #********# Ma = 46.07;# [kg/kmol] Mb = 29.0;# [kg/kmol] #For air from Table 2.2 (Pg 33) Eb_by_k = 78.6;# [K] rb = 0.3711; # [nm] # For C2H5OH using Eqn. 2.38 & 2.39 # From Table 2.3 Va = (2*0.0148)+(6*0.0037)+(0.0074);# [cubic m/kmol] Tba = 351.4;# [K] ra = 1.18*(Va**(1/3.0));#[nm] Ea_by_k = 1.21*Tba;# [K] rab = (ra+rb)/2.0;# [nm] Eab_by_k = math.sqrt(Ea_by_k*Eb_by_k);# [K] Collision_value = T/Eab_by_k; #From Fig. 2.5 (Page: 32) f(collision value) Collision_func = 0.595; Dab = (10**(-4)*(1.084-(0.249*math.sqrt((1/Ma)+(1/Mb))))*T**(3.0/2)*math.sqrt((1/Ma)+(1/Mb)))/(Pt*(rab**2)*Collision_func);#[square m/s] print" The diffusivity of ethanol through air at 1 atm. & 0 degree C is",round(Dab,7),"m^2/s" print" The observed value from (Table 2.1) is 1.02*10^(-5) square m/s'" # Illustration 2.4 import math # solution #***Data****# # a = acetic acid b = H2O z = 0.001;# [m] Dab = 0.95*10**(-9);#[square m/s] #************# Ma = 60.03;# [kg/kmol] Mb = 18.02;# [kg/kmol] #At 17 C & 9% solution density1 = 1012; #[kg/cubic m] Xa1 = (0.09/Ma)/((0.09/Ma)+(0.91/Mb)); Xb1 = 1-Xa1; M1 = 1/((0.09/Ma)+(0.91/Mb));# [kg/kmol] #At 17 C & 3% solution density2 = 1003.2; #[kg/cubic m] Xa2 = (0.03/Ma)/((0.03/Ma)+(0.97/Mb)); Xb2 = 1-Xa2; M2 = 1/((0.03/Ma)+(0.97/Mb));# [kg/kmol] avg_density_by_M = ((density1/M1)+(density2/M2))/2;#[kmol/cubic m] # From Eqn. 2.42 Xbm = (Xb2-Xb1)/math.log(Xb2/Xb1); # From Eqn. 2.41 Na = Dab*(avg_density_by_M)*(Xa1-Xa2)/(Xbm*z); #[square m/s] print" The rate of diffusion is",round(Na,9),"square m/s" # Illustration 2.5 # solution #***Data****# # a = mannitol b = H2O T = 293; # [K] #*****# Mb = 18.02;# [kg/kmol] # From Table 2.3 (Pg 33) Va = (0.0148*6)+(0.0037*14)+(0.0074*6); # [cubic m/kmol] viscosity = 0.001005; # [kg/m.s] association_factor = 2.26; # [water as a solvent] Dab = (117.3*10**(-18))*((association_factor*Mb)**0.5)*T/(viscosity*Va**0.6); # [square m/s] print" Diffusivity of mannitol is",round(Dab,12),"square m/s" print" Observed value is 0.56*10^(-9) square m/s" # Illustration 2.6 # solution #****Data****# T2 = 70+273;# [K] #**********# # a = mannitol b = H2O # From Illustration 2.5 at 20 C viscosity1 = 1.005*10**(-3); # [kg/m.s] Dab1 = 0.56*10**(-9); #[m^2/s] T1 = 273+20;# [K] # At 70 C viscosity2 = 0.4061*10**(-3); # kg/m.s # Eqn. 2.44 indicates Dab*viscocity/T = constnt Dab2 = Dab1*(T2)*(viscosity1)/(T1*viscosity2);# [square m/s] print" Diffusivity of mannitol at 70 degree C is",round(Dab2,11),"square/s " print" Observed value at 70 degree C is 1.56*10^(-9) square m/s"