#!/usr/bin/env python # coding: utf-8 # In[1]: from openpiv import tools, pyprocess, scaling, filters, \ validation, process, preprocess from skimage import io import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'notebook') # In[2]: file_a = '../test4/Camera1-0101.tif' file_b = '../test4/Camera1-0102.tif' im_a = tools.imread( file_a ) im_b = tools.imread( file_b ) plt.imshow(np.c_[im_a,im_b],cmap='gray') # In[3]: # let's crop the region of interest frame_a = im_a[380:1980,0:1390] frame_b = im_b[380:1980,0:1390] plt.imshow(np.c_[frame_a,frame_b],cmap='gray') # In[4]: # Process the original cropped image and see the OpenPIV result: # typical parameters: window_size = 32 #pixels overlap = 16 # pixels search_area_size = 64 # pixels frame_rate = 40 # fps # process again with the masked images, for comparison# process once with the original images u, v, sig2noise = process.extended_search_area_piv( frame_a.astype(np.int32) , frame_b.astype(np.int32), window_size = window_size, overlap = overlap, dt=1./frame_rate, search_area_size = search_area_size, sig2noise_method = 'peak2peak') x, y = process.get_coordinates( image_size = frame_a.shape, window_size = window_size, overlap = overlap ) u, v, mask = validation.global_val( u, v, (-300.,300.),(-300.,300.)) u, v, mask = validation.sig2noise_val( u, v, sig2noise, threshold = 1.1 ) u, v = filters.replace_outliers( u, v, method='localmean', max_iter = 3, kernel_size = 3) x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor = 96.52 ) # save to a file tools.save(x, y, u, v, mask, 'test.txt', fmt='%9.6f', delimiter='\t') tools.display_vector_field('test.txt', scale=50, width=0.002) # In[5]: # masking using not optimal choice of the methods or parameters: masked_a = preprocess.dynamic_masking(frame_a,method='edges',filter_size=7,threshold=0.005) masked_b = preprocess.dynamic_masking(frame_b,method='intensity',filter_size=3,threshold=0.0) plt.imshow(np.c_[masked_a,masked_b],cmap='gray') # In[6]: # masking using optimal (manually tuned) set of parameters and the right method: masked_a = preprocess.dynamic_masking(frame_a,method='edges',filter_size=7,threshold=0.01) masked_b = preprocess.dynamic_masking(frame_b,method='edges',filter_size=7,threshold=0.01) plt.imshow(np.c_[masked_a,masked_b],cmap='gray') # In[7]: # Process the masked cropped image and see the OpenPIV result: # process again with the masked images, for comparison# process once with the original images u, v, sig2noise = process.extended_search_area_piv( masked_a.astype(np.int32) , masked_b.astype(np.int32), window_size = window_size, overlap = overlap, dt=1./frame_rate, search_area_size = search_area_size, sig2noise_method = 'peak2peak') x, y = process.get_coordinates( image_size = masked_a.shape, window_size = window_size, overlap = overlap ) u, v, mask = validation.global_val( u, v, (-300.,300.),(-300.,300.)) u, v, mask = validation.sig2noise_val( u, v, sig2noise, threshold = 1.1) u, v = filters.replace_outliers( u, v, method='localmean', max_iter = 3, kernel_size = 3) x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor = 96.52 ) # save to a file tools.save(x, y, u, v, mask, 'test_masked.txt', fmt='%9.6f', delimiter='\t') tools.display_vector_field('test_masked.txt', scale=50, width=0.002) # In[ ]: