#!/usr/bin/env python # coding: utf-8 # In[1]: # %load red_Cell.py from openpiv import tools, pyprocess, scaling, filters, \ validation, process import numpy as np from skimage import data import matplotlib.pyplot as plt from scipy import ndimage from skimage import feature from PIL import Image from pylab import * get_ipython().run_line_magic('matplotlib', 'inline') from skimage.color import rgb2gray from skimage import img_as_uint frame_a = tools.imread('../test3/Y4-S3_Camera000398.tif') frame_b = tools.imread('../test3/Y4-S3_Camera000399.tif') # for whatever reason the shape of frame_a is (3, 284, 256) # so we first tranpose to the RGB image and then convert to the gray scale frame_a = img_as_uint(rgb2gray(frame_a)) frame_b = img_as_uint(rgb2gray(frame_b)) plt.imshow(np.c_[frame_a,frame_b],cmap=plt.cm.gray) # In[2]: # frame_a.dtype # In[3]: #u, v, sig2noise = openpiv.process.extended_search_area_piv( frame_a, frame_b, window_size=24, overlap=12, dt=0.02, search_area_size=64, sig2noise_method='peak2peak' ) u, v, sig2noise = pyprocess.extended_search_area_piv( frame_a, frame_b, window_size=32, overlap=8, dt=.1, sig2noise_method='peak2peak' ) x, y = pyprocess.get_coordinates( image_size=frame_a.shape, window_size=32, overlap=8 ) # In[4]: u, v, mask = validation.sig2noise_val( u, v, sig2noise, threshold = 1.3 ) u, v = filters.replace_outliers( u, v, method='localmean', max_iter=10, kernel_size=2) x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor = 96.52 ) quiver(x,y,u,v) # In[5]: tools.save(x, y, u, v, mask, 'Y4-S3_Camera000398.txt' ) tools.display_vector_field('Y4-S3_Camera000398.txt', scale=3, width=0.0125) # frame_vectors = io.imshow(vectors) # In[6]: x,y,u,v, mask = process.WiDIM(frame_a.astype(np.int32), frame_b.astype(np.int32), ones_like(frame_a).astype(np.int32), min_window_size=32, overlap_ratio=0.25, coarse_factor=0, dt=0.1, validation_method='mean_velocity', trust_1st_iter=0, validation_iter=0, tolerance=0.7, nb_iter_max=1, sig2noise_method='peak2peak') # In[7]: tools.save(x, y, u, v, zeros_like(u), 'Y4-S3_Camera000398.txt' ) tools.display_vector_field('Y4-S3_Camera000398.txt', scale=300, width=0.005) # In[8]: x,y,u,v, mask = process.WiDIM(frame_a.astype(np.int32), frame_b.astype(np.int32), ones_like(frame_a).astype(np.int32), min_window_size=16, overlap_ratio=0.25, coarse_factor=2, dt=0.1, validation_method='mean_velocity', trust_1st_iter=1, validation_iter=2, tolerance=0.7, nb_iter_max=4, sig2noise_method='peak2peak') # In[9]: tools.save(x, y, u, v, zeros_like(u), 'Y4-S3_Camera000398.txt' ) tools.display_vector_field('Y4-S3_Camera000398.txt', scale=300, width=0.005) # In[ ]: