#!/usr/bin/env python # coding: utf-8 # In[17]: # %load red_Cell.py from openpiv import tools, pyprocess, scaling, filters, \ validation, process import numpy as np import matplotlib.pyplot as plt import imageio from pylab import * get_ipython().run_line_magic('matplotlib', 'inline') from skimage import img_as_uint frame_a = tools.imread('../test3/Y4-S3_Camera000398.tif') frame_b = tools.imread('../test3/Y4-S3_Camera000399.tif') # In[18]: # for whatever reason the shape of frame_a is (3, 284, 256) # so we first tranpose to the RGB image and then convert to the gray scale # frame_a = img_as_uint(rgb2gray(frame_a)) # frame_b = img_as_uint(rgb2gray(frame_b)) plt.imshow(np.c_[frame_a,frame_b],cmap=plt.cm.gray) # In[19]: # Use Cython version: process.pyx u, v, sig2noise = process.extended_search_area_piv( frame_a.astype(np.int32), frame_b.astype(np.int32), window_size=32, overlap=8, dt=.1, sig2noise_method='peak2peak' ) x, y = process.get_coordinates( image_size=frame_a.shape, window_size=32, overlap=8 ) u, v, mask = validation.sig2noise_val( u, v, sig2noise, threshold = 1.3 ) u, v = filters.replace_outliers( u, v, method='localmean', max_iter=10, kernel_size=2) x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor = 96.52 ) tools.save(x, y, u, v, mask, 'Y4-S3_Camera000398_a.txt' ) # In[20]: # Use Python version, pyprocess: u, v, sig2noise = pyprocess.extended_search_area_piv( frame_a.astype(np.int32), frame_b.astype(np.int32), window_size=32, overlap=8, dt=.1, sig2noise_method='peak2peak' ) x, y = pyprocess.get_coordinates( image_size=frame_a.shape, window_size=32, overlap=8 ) u, v, mask = validation.sig2noise_val( u, v, sig2noise, threshold = 1.3 ) u, v = filters.replace_outliers( u, v, method='localmean', max_iter=10, kernel_size=2) x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor = 96.52 ) tools.save(x, y, u, v, mask, 'Y4-S3_Camera000398_b.txt' ) # In[21]: # "natural" view without image fig,ax = plt.subplots(2,1,figsize=(6,12)) ax[0].invert_yaxis() ax[0].quiver(x,y,u,v) ax[0].set_title(' Sort of natural view ') ax[1].quiver(x,y,u,-v) ax[1].set_title('Quiver with 0,0 origin needs `negative` v for display'); # plt.quiver(x,y,u,v) # In[22]: tools.display_vector_field('Y4-S3_Camera000398_a.txt',on_img=True,image_name='../test3/Y4-S3_Camera000398.tif',scaling_factor=96.52) # In[23]: tools.display_vector_field('Y4-S3_Camera000398_a.txt') # In[24]: tools.display_vector_field('Y4-S3_Camera000398_b.txt') # In[25]: x,y,u,v, mask = process.WiDIM(frame_a.astype(np.int32), frame_b.astype(np.int32), ones_like(frame_a).astype(np.int32), min_window_size=32, overlap_ratio=0.25, coarse_factor=0, dt=0.1, validation_method='mean_velocity', trust_1st_iter=0, validation_iter=0, tolerance=0.7, nb_iter_max=1, sig2noise_method='peak2peak') # In[26]: tools.save(x, y, u, v, zeros_like(u), 'Y4-S3_Camera000398_widim1.txt' ) # In[27]: x,y,u,v, mask = process.WiDIM(frame_a.astype(np.int32), frame_b.astype(np.int32), ones_like(frame_a).astype(np.int32), min_window_size=16, overlap_ratio=0.25, coarse_factor=2, dt=0.1, validation_method='mean_velocity', trust_1st_iter=1, validation_iter=2, tolerance=0.7, nb_iter_max=4, sig2noise_method='peak2peak') # In[28]: tools.save(x, y, u, v, zeros_like(u), 'Y4-S3_Camera000398_widim2.txt' ) # In[29]: tools.display_vector_field('Y4-S3_Camera000398_widim1.txt', widim=True, scale=300, width=0.005) tools.display_vector_field('Y4-S3_Camera000398_widim2.txt', widim=True, scale=300, width=0.005) tools.display_vector_field('Y4-S3_Camera000398_a.txt', scale=2, width=0.005,scaling_factor=96.52) tools.display_vector_field('Y4-S3_Camera000398_b.txt', scale=2, width=0.005,scaling_factor=96.52)