#!/usr/bin/env python # coding: utf-8 # In[1]: # %load red_Cell.py from openpiv import tools, pyprocess, scaling, filters, \ validation from openpiv import widim import numpy as np import matplotlib.pyplot as plt import imageio from pylab import * get_ipython().run_line_magic('matplotlib', 'inline') from skimage import img_as_uint # In[2]: frame_a = tools.imread('../test3/Y4-S3_Camera000398.tif') frame_b = tools.imread('../test3/Y4-S3_Camera000399.tif') # In[3]: plt.imshow(np.c_[frame_a[40:,:-40],frame_b[40:,:-40]],cmap=plt.cm.gray) # In[4]: frame_a = frame_a[40:, :-40].astype(np.int32) # change of type for the Cython WiDIM frame_b = frame_b[40:, :-40].astype(np.int32) # In[ ]: # In[5]: # Use Python version, pyprocess: u, v, sig2noise = pyprocess.extended_search_area_piv( frame_a, frame_b, window_size=32, overlap=16, search_area_size=32, dt=.1, sig2noise_method='peak2peak', normalized_correlation=True, correlation_method = 'circular') x, y = pyprocess.get_coordinates(image_size=frame_a.shape, search_area_size=32, overlap=16) # In[6]: plt.quiver(x,y,u,v,sig2noise) plt.gca().invert_yaxis() plt.colorbar() # In[7]: plt.hist(sig2noise.flatten()); p = percentile(sig2noise,5) # bottom 5% plt.plot([p,p],[0,35],lw=2) # In[8]: u, v, mask = validation.sig2noise_val( u, v, sig2noise, threshold = p ) u, v = filters.replace_outliers( u, v, method='localmean', max_iter=1, kernel_size=2) x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor = 1. ) tools.save(x, y, u, v, sig2noise, mask, 'Y4-S3_Camera000398_a.txt' ) # In[9]: # "natural" view without image fig,ax = plt.subplots(2,1,figsize=(6,12)) ax[0].invert_yaxis() ax[0].quiver(x,y,u,v) ax[0].set_title(' Sort of natural view ') ax[1].quiver(x,y,u,v) ax[1].set_title('Quiver with 0,0 origin needs `negative` v for visualization purposes'); # plt.quiver(x,y,u,v) # In[10]: fig,ax = plt.subplots(figsize=(8,8)) tools.display_vector_field('Y4-S3_Camera000398_a.txt', on_img=True, image_name='../test3/Y4-S3_Camera000398.tif', scaling_factor=1., ax = ax) # In[11]: tools.display_vector_field('Y4-S3_Camera000398_a.txt') # In[12]: x,y,u,v, mask = widim.WiDIM(frame_a.astype(np.int32), frame_b.astype(np.int32), ones_like(frame_a).astype(np.int32), min_window_size=32, overlap_ratio=0.25, coarse_factor=0, dt=0.1, validation_method='mean_velocity', trust_1st_iter=0, validation_iter=0, tolerance=0.7, nb_iter_max=1, sig2noise_method='peak2peak') # In[13]: tools.save(x, y, u, v, 0*v, 0*v, 'Y4-S3_Camera000398_widim1.txt' ) # In[14]: x,y,u,v, mask = widim.WiDIM(frame_a.astype(np.int32), frame_b.astype(np.int32), ones_like(frame_a).astype(np.int32), min_window_size=16, overlap_ratio=0.25, coarse_factor=2, dt=0.1, validation_method='mean_velocity', trust_1st_iter=1, validation_iter=2, tolerance=0.7, nb_iter_max=4, sig2noise_method='peak2peak') # In[15]: tools.save(x, y, u, v, 0*v, 0*v, 'Y4-S3_Camera000398_widim2.txt' ) # In[16]: tools.display_vector_field('Y4-S3_Camera000398_widim1.txt', widim=True, scale=300, width=0.005) tools.display_vector_field('Y4-S3_Camera000398_widim2.txt', widim=True, scale=300, width=0.005) tools.display_vector_field('Y4-S3_Camera000398_a.txt', scale=300, width=0.005,scaling_factor=1.) # In[ ]: