#!/usr/bin/env python # coding: utf-8 # In[16]: # %loadpy tutorial-part1.py # In[17]: # import sys # sys.path.append('/Users/alex/Documents/OpenPIV/openpiv-python') import openpiv.tools import openpiv.process import openpiv.scaling import numpy as np import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') # In[18]: frame_a = openpiv.tools.imread( 'exp1_001_a.bmp' ) frame_b = openpiv.tools.imread( 'exp1_001_b.bmp' ) # In[19]: fig,ax = plt.subplots(1,2) ax[0].imshow(frame_a,cmap=plt.cm.gray) ax[1].imshow(frame_b,cmap=plt.cm.gray) # In[20]: winsize = 24 # pixels searchsize = 64 # pixels, search in image B overlap = 12 # pixels dt = 0.02 # sec u0, v0, sig2noise = openpiv.process.extended_search_area_piv( frame_a.astype(np.int32), frame_b.astype(np.int32), window_size=winsize, overlap=overlap, dt=dt, search_area_size=searchsize, sig2noise_method='peak2peak' ) # In[21]: x, y = openpiv.process.get_coordinates( image_size=frame_a.shape, window_size=winsize, overlap=overlap ) # In[22]: u1, v1, mask = openpiv.validation.sig2noise_val( u0, v0, sig2noise, threshold = 1.3 ) print np.nansum((u1 - u0)**2) # In[23]: u2, v2 = openpiv.filters.replace_outliers( u1, v1, method='localmean', max_iter=10, kernel_size=2) print np.nansum((u2 - u1)**2) # In[24]: x, y, u3, v3 = openpiv.scaling.uniform(x, y, u2, v2, scaling_factor = 96.52 ) print np.nansum((u3 - u2)**2) # In[25]: openpiv.tools.save(x, y, u3, v3, mask, 'exp1_001.txt' ) # In[26]: openpiv.tools.display_vector_field('exp1_001.txt', scale=100, width=0.0025)