from __future__ import division from cStringIO import StringIO import datetime import glob import os import arrow from dateutil import tz import matplotlib.cm as cm import matplotlib.dates as mdates import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import matplotlib.patches as patches import netCDF4 as nc import numpy as np import pandas as pd import requests from scipy import interpolate as interp import scipy.io as sio from salishsea_tools import ( nc_tools, viz_tools, stormtools, tidetools, ) # Font format title_font = { 'fontname': 'Bitstream Vera Sans', 'size': '15', 'color': 'black', 'weight': 'medium' } axis_font = {'fontname': 'Bitstream Vera Sans', 'size': '13'} from __future__ import division, print_function from salishsea_tools import (nc_tools,viz_tools,stormtools,tidetools) from salishsea_tools.nowcast import figures from datetime import datetime, timedelta from pylab import * from sklearn import linear_model from glob import glob from IPython.core.display import HTML from salishsea_tools.nowcast import figures import matplotlib.pyplot as plt import scipy.io as sio import netCDF4 as nc import numpy as np import math #import glob import os import datetime %matplotlib inline from __future__ import division import datetime from glob import glob import os from IPython.core.display import HTML import netCDF4 as nc from salishsea_tools.nowcast import figures %matplotlib inline def results_dataset(period, grid, results_dir): """Return the results dataset for period (e.g. 1h or 1d) and grid (e.g. grid_T, grid_U) from results_dir. """ filename_pattern = 'SalishSea_{period}_*_{grid}.nc' filepaths = glob(os.path.join(results_dir, filename_pattern.format(period=period, grid=grid))) return nc.Dataset(filepaths[0]) run_date = datetime.datetime(2015,3,19) #run_date = datetime.date.today() # Results dataset location results_home = '/data/dlatorne/MEOPAR/SalishSea/nowcast/' results_dir = os.path.join(results_home, run_date.strftime('%d%b%y').lower()) def date(year, month, day_start, day_end, period, grid): day_range = np.arange(day_start, day_end+1) day_len = len(day_range) files_all = [None] * day_len inds = np.arange(day_len) for i, day in zip(inds, day_range): run_date = datetime.datetime(year,month, day) results_home = '/data/dlatorne/MEOPAR/SalishSea/nowcast/' results_dir = os.path.join(results_home, run_date.strftime('%d%b%y').lower()) filename = 'SalishSea_' + period + '_' + run_date.strftime('%Y%m%d').lower() + \ '_' + run_date.strftime('%Y%m%d').lower() + '_' + grid + '.nc' file_single = os.path.join(results_dir, filename) files_all[i] = file_single return files_all grid_T_hr = results_dataset('1h', 'grid_T', results_dir) bathy = nc.Dataset('/data/nsoontie/MEOPAR/NEMO-forcing/grid/bathy_meter_SalishSea2.nc') PNW_coastline = sio.loadmat('/ocean/rich/more/mmapbase/bcgeo/PNW.mat') filepath_name = date(run_date.year,run_date.month,run_date.day,run_date.day,'1h','grid_T') latitude=grid_T_hr.variables['nav_lat'] longitude=grid_T_hr.variables['nav_lon'] sal_hr = grid_T_hr.variables['vosaline'] t, z = 3, 0 sal_hr = np.ma.masked_values(sal_hr[t, z], 0) saline=sio.loadmat('/ocean/jieliu/research/meopar\ /autodataupdate/ferrydata/SBE1920150318.mat') def find_dist (q, lon11, lat11, X, Y, bathy, longitude, latitude, saline_nemo_3rd, saline_nemo_4rd): k=0 values =0 valuess=0 dist = np.zeros(9) weights = np.zeros(9) value_3rd=np.zeros(9) value_4rd=np.zeros(9) regr =linear_model.LinearRegression() regr.fit(lon11,lat11); regr.coef_ [x1, j1] = tidetools.find_closest_model_point(lon11[q],regr.predict(lon11[q]),\ X,Y,bathy,lon_tol=0.0052,lat_tol=0.00210,allow_land=False) for i in np.arange(x1-1,x1+2): for j in np.arange(j1-1,j1+2): dist[k]=tidetools.haversine(lon11[q],lat11[q],longitude[i,j],latitude[i,j]) weights[k]=1.0/dist[k] value_3rd[k]=saline_nemo_3rd[i,j]*weights[k] value_4rd[k]=saline_nemo_4rd[i,j]*weights[k] values=values+value_3rd[k] valuess=valuess+value_4rd[k] k+=1 return values, valuess, weights def salinity_fxn(saline): a=saline['ferryData'] b=a['data'] dataa = b[0,0] time=dataa['matlabtime'][0,0] lonn=dataa['Longitude'][0,0] latt=dataa['Latitude'][0,0] salinity=dataa['Practical_Salinity'][0,0] a=len(time) lon1=np.zeros([a,1]) lat1=np.zeros([a,1]) salinity1=np.zeros([a,1]) for i in np.arange(0,a): matlab_datenum = np.float(time[i]) python_datetime = datetime.datetime.fromordinal(int(matlab_datenum))\ + timedelta(days=matlab_datenum%1) - timedelta(days = 366) if((python_datetime.year == run_date.year) & (python_datetime.month == run_date.month)\ & (python_datetime.day == run_date.day) & (python_datetime.hour >= 3))&(python_datetime.hour < 5): lon1[i]=lonn[i] lat1[i]=latt[i] salinity1[i]=salinity[i] mask=lon1[:,0]!=0 lon1_2_4=lon1[mask] lat1_2_4=lat1[mask] salinity1_2_4=salinity1[mask] lon11=lon1_2_4[0:-1:50] lat11=lat1_2_4[0:-1:50] salinity11=salinity1_2_4[0:-1:50] bathy, X, Y = tidetools.get_SS2_bathy_data() date_str = run_date.strftime('%d-%b-%Y') j=int(filepath_name[0][65:67]) jj=int(filepath_name[0][67:69]) latitude=grid_T_hr.variables['nav_lat'][:] longitude=grid_T_hr.variables['nav_lon'][:] saline_nemo = grid_T_hr.variables['vosaline'] saline_nemo_3rd = saline_nemo[3,0, 0:898, 0:398] saline_nemo_4rd = saline_nemo[4,0, 0:898, 0:398] matrix=np.zeros([15,9]) values=np.zeros([15,1]) valuess=np.zeros([15,1]) value_mean_3rd_hour=np.zeros([15,1]) value_mean_4rd_hour=np.zeros([15,1]) for q in np.arange(0,15): values[q], valuess[q], matrix[q,:]=find_dist(q, lon11, lat11, X, Y,\ bathy, longitude, latitude, saline_nemo_3rd, saline_nemo_4rd) value_mean_3rd_hour[q]=values[q]/sum(matrix[q]) value_mean_4rd_hour[q]=valuess[q]/sum(matrix[q]) return lon11, lat11, value_mean_3rd_hour, value_mean_4rd_hour, salinity11, date_str # Hides Deprecation warming import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) # Dictionary of ferry stations - new ferry_stations = {'Tsawwassen': {'lat': 49.0084,'lon': -123.1281}, 'Duke': {'lat': 49.1632,'lon': -123.8909}, 'Vancouver': {'lat': 49.2827,'lon': -123.1207}} def salinity_ferry_route(grid_T, grid_B, PNW_coastline, ferry_sal): """ plot daily salinity comparisons between ferry observations and model results as well as ferry route with model salinity distribution. :arg grid_B: Bathymetry dataset for the Salish Sea NEMO model. :type grid_B: :class:`netCDF4.Dataset` :arg PNW_coastline: Coastline dataset. :type PNW_coastline: :class:`mat.Dataset` :arg ferry_sal: saline :type ferry_sal: numpy :returns: fig """ fig, axs = plt.subplots(1, 2, figsize=(15, 8)) figures.plot_map(axs[1], grid_B, PNW_coastline) axs[1].set_xlim(-124.5, -122.5) axs[1].set_ylim(48.2, 49.5) viz_tools.set_aspect(axs[1],coords='map',lats=latitude) cmap=plt.get_cmap('spectral') cmap.set_bad('burlywood') mesh=axs[1].pcolormesh(longitude[:],latitude[:],sal_hr[:],cmap=cmap) cbar=fig.colorbar(mesh) plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='w') cbar.set_label('Pratical Salinity', color='white') axs[1].set_title('Ferry Route: 3am[UTC] model result ', **title_font) bbox_args = dict(boxstyle='square', facecolor='white', alpha=0.7) stations=['Tsawwassen','Duke','Vancouver'] for stn in stations: axs[1].plot(ferry_stations[stn]['lon'], ferry_stations[stn]['lat'], marker='D', \ color='white',\ markersize=10, markeredgewidth=2) axs[1].annotate ('Tsawwassen',(ferry_stations['Tsawwassen']['lon'] + 0.02,\ ferry_stations['Tsawwassen']['lat'] + 0.12), fontsize=15, color='black', bbox=bbox_args ) axs[1].annotate ('Duke',(ferry_stations['Duke']['lon'] - 0.35,\ ferry_stations['Duke']['lat'] ),fontsize=15, color='black', bbox=bbox_args ) axs[1].annotate ('Vancouver',(ferry_stations['Vancouver']['lon'] - 0.1,\ ferry_stations['Vancouver']['lat']+ 0.09 ),fontsize=15, color='black', bbox=bbox_args ) figures.axis_colors(axs[1], 'white') lon11, lat11, value_mean_3rd_hour, value_mean_4rd_hour, salinity11, date_str = salinity_fxn(saline) axs[1].plot(lon11,lat11,'black', linewidth = 4) model_salinity_3rd_hour=axs[0].plot(lon11,value_mean_3rd_hour,'DodgerBlue',\ linewidth=2, label='3 am [UTC]') model_salinity_4rd_hour=axs[0].plot(lon11,value_mean_4rd_hour,'MediumBlue',\ linewidth=2, label="4 am [UTC]" ) observation_salinity=axs[0].plot(lon11,salinity11,'DarkGreen', linewidth=2, label="Observed") axs[0].text(0.25, -0.1,'Observations from Ocean Networks Canada', \ transform=axs[0].transAxes, color='white') axs[0].set_xlim(-124, -123) axs[0].set_ylim(10, 30) axs[0].set_title('Surface Salinity: ' + date_str, **title_font) axs[0].set_xlabel('Longitude', **axis_font) axs[0].set_ylabel('Practical Salinity', **axis_font) axs[0].legend() axs[0].grid() fig.patch.set_facecolor('#2B3E50') figures.axis_colors(axs[0], 'gray') return fig fig = salinity_ferry_route(grid_T_hr, bathy, PNW_coastline, saline)