#!/usr/bin/env python # coding: utf-8 # # Test `make_runoff_file` for v202111 # # This notebook was used to develop and test the code for generation of the v202111 daily runoff forcing files. # Those runoff files are based on day-averaged discharge (1 day lagged) observations from gauged rivers across # the SalishSeaCast model domain. # That replaces the use of climatology for all watersheds, # in contrast to prior model versions that used observations for the Fraser River at Hope and climatology for all # other rivers. # The original version of this notebook was created by Susan and was copied in from # `tools/I_ForcingFiles/Rivers/ProductionDailyRiverNCfile.ipynb`. # # The Python module that Susan created by extracting the most of the code from that notebook was copied in from # `tools/I_ForcingFiles/Rivers/DailyRiverFlows.py` as `nowcast.daily_river_flows`. # # That code was refactored and integrated into `nowcast.workers.make_runoff_file` using this notebook for functional # and visualization testing along the way as unit tests for the refactored code were developed in # `tests.workers.test_make_runoff_file`. # Execution of this notebook requires: # * `salishsea-nowcast` env with `jupyterlab` installed # * `rivers."rivers dir"` in `nowcast.yaml` set to `/tmp/` # * access to `/results/forcing/rivers/observations/` (perhaps via `sshfs -o ro` mount) # * access to `/data/dlatorne/SOG-projects/SOG-forcing/ECget/` (perhaps via `sshfs -o ro` mount) # In[1]: import arrow #import datetime as dt #import pandas as pd #from pathlib import Path #import xarray as xr import yaml #from salishsea_tools import rivertools #from salishsea_tools import river_202108 as rivers from nowcast.daily_river_flows import make_runoff_files #prop_dict_name ='river_202108' #bathy_type = 'b202108' # In[2]: config_file = '../config/nowcast.yaml' with open(config_file, "r") as stream: config = yaml.safe_load(stream) #config # what coordinates are you using? gridcoords = 'coordinates_seagrid_SalishSea201702.nc' coords_file = '../../../grid/'+gridcoords # where is the river information? prop_dict = rivers.prop_dict#get dimensions for netcdf files def get_area(config): #directory = Path(config["run"]["enabled hosts"]["salish-nowcast"]["grid dir"]) directory = Path('/home/sallen/MEOPAR/grid/') coords_file = directory / config["run types"]["nowcast-green"]["coordinates"] with xr.open_dataset(coords_file, decode_times=False) as fB: area = fB['e1t'][0,:] * fB['e2t'][0,:] return area#list of watersheds we are including names = ['bute', 'evi_n', 'jervis', 'evi_s', 'howe', 'jdf', 'skagit', 'puget', 'toba', 'fraser'] # In[3]: # Date Range dateneeded = arrow.get(2023, 2, 5) print (dateneeded) # In[4]: make_runoff_files(dateneeded, config) maindir = '/results/forcing/rivers/observations/' origdir = '/data/dlatorne/SOG-projects/SOG-forcing/ECget/' def getdir(river_name): if river_name in ['Fraser', 'Englishman']: thedir = origdir else: thedir = maindir return (thedir)def read_river(river_name, ps): thedir = getdir(river_name) river_flow = pd.read_csv(f'{thedir}/{river_name}_flow', header=None, sep='\s+', index_col=False, names=['year', 'month', 'day', 'flow']) river_flow['date'] = pd.to_datetime(river_flow.drop(columns='flow')) river_flow.set_index('date', inplace=True) river_flow = river_flow.drop(columns=['year', 'month', 'day']) if ps == 'primary': river_flow = river_flow.rename(columns={'flow': 'Primary River Flow'}) elif ps == 'secondary': river_flow = river_flow.rename(columns={'flow': 'Secondary River Flow'}) return river_flowdef read_river_Theodosia(): part1 = pd.read_csv(f'{maindir}/Theodosia_Scotty_flow', header=None, sep='\s+', index_col=False, names=['year', 'month', 'day', 'flow']) part2 = pd.read_csv(f'{maindir}/Theodosia_Bypass_flow', header=None, sep='\s+', index_col=False, names=['year', 'month', 'day', 'flow']) part3 = pd.read_csv(f'{maindir}/Theodosia_Diversion_flow', header=None, sep='\s+', index_col=False, names=['year', 'month', 'day', 'flow']) for part in [part1, part2, part3]: part['date'] = pd.to_datetime(part.drop(columns='flow')) part.set_index('date', inplace=True) part.drop(columns=['year', 'month', 'day'], inplace=True) part1 = part1.rename(columns={'flow': 'Scotty'}) part2 = part2.rename(columns={'flow': 'Bypass'}) part3 = part3.rename(columns={'flow': 'Diversion'}) theodosia = (part3.merge(part2, how='inner', on='date')).merge(part1, how='inner', on='date') theodosia['Secondary River Flow'] = theodosia['Scotty'] + theodosia['Diversion'] - theodosia['Bypass'] part3['FlowFromDiversion'] = part3.Diversion * theodosia_from_diversion_only theodosia = theodosia.merge(part3, how='outer', on='date', sort=True) theodosia['Secondary River Flow'] = theodosia['Secondary River Flow'].fillna( theodosia['FlowFromDiversion']) theodosia = theodosia.drop(['Diversion_x', 'Bypass', 'Scotty', 'Diversion_y', 'FlowFromDiversion'], axis=1) return theodosiadef do_a_pair(water_shed, watershed_from_river, dateneeded, primary_river_name, use_secondary, secondary_river_name='Null'): primary_river = read_river(primary_river_name, 'primary', config) if len(primary_river[primary_river.index == str(dateneeded.date())]) == 1: print (primary_river_name, ' good to go') primary_flow = primary_river[primary_river.index == str(dateneeded.date())].values else: print (primary_river_name, ' need to patch') primary_flow = patch_gaps(primary_river_name, primary_river, dateneeded) if use_secondary: print(secondary_river_name, 'read and check') if secondary_river_name == "Theodosia": secondary_river = read_river_Theodosia(config) else: secondary_river = read_river(secondary_river_name, 'secondary', config) if len(secondary_river[secondary_river.index == str(dateneeded.date())]) == 1: print (secondary_river_name, ' good to go') secondary_flow = secondary_river[secondary_river.index == str(dateneeded.date())].values else: print (secondary_river_name, ' need to patch') secondary_flow = patch_gaps(secondary_river_name, secondary_river, dateneeded) watershed_flux = (primary_flow * watershed_from_river[water_shed]['primary'] + secondary_flow * watershed_from_river[water_shed]['secondary']) else: watershed_flux = (primary_flow * watershed_from_river[water_shed]['primary']) return watershed_fluxdef do_fraser(watershed_from_river, dateneeded, primary_river_name, secondary_river_name): primary_river = read_river(primary_river_name, 'primary', config) if len(primary_river[primary_river.index == str(dateneeded.date())]) == 1: good = True print (primary_river_name, ' good to go') primary_flow = primary_river[primary_river.index == str(dateneeded.date())].values else: good = False print (primary_river_name, ' need to patch') lastdata = primary_river.iloc[-1] if lastdata.name > dateneeded.naive: print ('Not working at end of time series, use MakeDailyNCFiles notebook') stop else: day = dt.datetime(2020, 1, 2) - dt.datetime(2020, 1, 1) gap_length = int((dateneeded.naive - lastdata.name) / day) print (gap_length) primary_flow = lastdata.values secondary_river = read_river(secondary_river_name, 'secondary', config) if len(secondary_river[secondary_river.index == str(dateneeded.date())]) == 1: good = True print (secondary_river_name, ' good to go') secondary_flow = secondary_river[secondary_river.index == str(dateneeded.date())].values else: good = False print (secondary_river_name, ' need to patch') secondary_flow = patch_gaps(secondary_river_name, secondary_river, dateneeded) Fraser_flux = (primary_flow * watershed_from_river['fraser']['primary'] + secondary_flow * watershed_from_river['fraser']['secondary'] * watershed_from_river['fraser']['nico_into_fraser']) secondary_flux = (secondary_flow * watershed_from_river['fraser']['secondary'] * (1 - watershed_from_river['fraser']['nico_into_fraser'])) print ('Fraser done') return Fraser_flux, secondary_fluxmatching_dictionary = {'Englishman': 'Salmon_Sayward', 'Theodosia': 'Clowhom_ClowhomLake', 'RobertsCreek': 'Englishman', 'Salmon_Sayward': 'Englishman', 'Squamish_Brackendale': 'Homathko_Mouth', 'SanJuan_PortRenfrew': 'Englishman', 'Nisqually_McKenna': 'Snohomish_Monroe', 'Snohomish_Monroe': 'Skagit_MountVernon', 'Skagit_MountVernon': 'Snohomish_Monroe', 'Homathko_Mouth': 'Squamish_Brackendale', 'Nicomekl_Langley': 'RobertsCreek', 'Greenwater_Greenwater': 'Snohomish_Monroe', 'Clowhom_ClowhomLake': 'Theodosia_Diversion'} backup_dictionary = {'SanJuan_PortRenfrew': 'RobertsCreek', 'Theodosia': 'Englishman'} patching_dictionary = {'Englishman': ['fit', 'persist'], 'Theodosia': ['fit', 'backup', 'persist'], 'RobertsCreek': ['fit', 'persist'], 'Salmon_Sayward': ['fit', 'persist'], 'Squamish_Brackendale': ['fit', 'persist'], 'SanJuan_PortRenfrew': ['fit', 'backup', 'persist'], 'Nisqually_McKenna': ['fit', 'persist'], 'Snohomish_Monroe': ['fit', 'persist'], 'Skagit_MountVernon': ['fit', 'persist'], 'Homathko_Mouth': ['fit', 'persist'], 'Nicomekl_Langley': ['fit', 'persist'], 'Greenwater_Greenwater': ['fit', 'persist'], 'Clowhom_ClowhomLake': ['fit', 'persist']}persist_until = {'Englishman': 0, 'Theodosia': 0, 'RobertsCreek': 0, 'Salmon_Sayward': 0, 'Squamish_Brackendale': 0, 'SanJuan_PortRenfrew': 0, 'Nisqually_McKenna': 4, 'Snohomish_Monroe': 0, 'Skagit_MountVernon': 3, 'Homathko_Mouth': 1, 'Nicomekl_Langley': 0, 'Greenwater_Greenwater': 1, 'Clowhom_ClowhomLake': 2}def patch_gaps(name, primary_river, dateneeded): lastdata = primary_river.iloc[-1] # Find the length of gap assuming that the required day is beyond the time series available lastdata = primary_river.iloc[-1] if lastdata.name > dateneeded.naive: print ('Not working at end of time series, use MakeDailyNCFiles notebook') stop else: day = dt.datetime(2020, 1, 2) - dt.datetime(2020, 1, 1) gap_length = int((dateneeded.naive - lastdata.name) / day) print (gap_length) notfitted = True method = 0 while notfitted: if gap_length > persist_until[name]: fittype = patching_dictionary[name][method] else: fittype = 'persist' print (fittype) if fittype == 'persist': flux = lastdata.values notfitted = False else: if fittype == 'fit': useriver = matching_dictionary[name] elif fittype == 'backup': useriver = backup_dictionary[name] else: print ('typo in fit list') stop bad, flux = patch_fitting(primary_river, useriver, dateneeded, gap_length) if bad: method = method + 1 else: notfitted = False return fluxdef patch_fitting(primary_river, useriver, dateneeded, gap_length): bad = False firstchoice = read_river(useriver, 'primary', config) print (firstchoice.index[-5:]) length = 7 ratio = 0 for day in arrow.Arrow.range('day', dateneeded.shift(days=-length-gap_length), dateneeded.shift(days=-1-gap_length)): numer = primary_river[primary_river.index == str(day.date())].values denom = firstchoice[firstchoice.index == str(day.date())].values print (numer, denom, numer/denom) if (len(denom) == 1) and (len(numer) == 1): ratio = ratio + numer / denom else: bad = True if len(firstchoice[firstchoice.index == str(dateneeded.date())].values) != 1: bad = True if not bad: print (ratio/length) flux = ratio/length * firstchoice[firstchoice.index == str(dateneeded.date())].values else: flux = np.nan return bad, fluxriver = 'Englishman' primary_river = read_river(river, 'primary', config) lastdata = primary_river.iloc[-1] print (lastdata.name, dateneeded) lastdata.name < dateneeded.naive day = dt.datetime(2020, 1, 2) - dt.datetime(2020, 1, 1) gap_length = int((dateneeded.naive - lastdata.name) / day) gap_lengthwatershed_from_river = { 'bute': {'primary': 2.015}, 'jervis': {'primary': 8.810, 'secondary': 140.3}, 'howe': {'primary': 2.276}, 'jdf': {'primary': 8.501}, 'evi_n': {'primary': 10.334}, 'evi_s': {'primary': 24.60}, 'toba': {'primary': 0.4563, 'secondary': 14.58}, 'skagit': {'primary': 1.267, 'secondary': 1.236}, 'puget': {'primary': 8.790, 'secondary': 29.09}, 'fraser' : {'primary': 1.161, 'secondary': 162, 'nico_into_fraser': 0.83565} } rivers_for_watershed = { 'bute': {'primary': 'Homathko_Mouth', 'secondary': 'False'}, 'evi_n': {'primary': 'Salmon_Sayward', 'secondary': 'False'}, 'jervis': {'primary': 'Clowhom_ClowhomLake', 'secondary': 'RobertsCreek'}, 'evi_s': {'primary': 'Englishman', 'secondary': 'False'}, 'howe': {'primary': 'Squamish_Brackendale', 'secondary': 'False'}, 'jdf': {'primary': 'SanJuan_PortRenfrew', 'secondary': 'False'}, 'skagit': {'primary': 'Skagit_MountVernon', 'secondary': 'Snohomish_Monroe'}, 'puget': {'primary': 'Nisqually_McKenna', 'secondary': 'Greenwater_Greenwater'}, 'toba': {'primary': 'Homathko_Mouth', 'secondary': 'Theodosia'}, 'fraser': {'primary': 'Fraser', 'secondary': 'Nicomekl_Langley'}, }fraserratio = rivers.prop_dict['fraser']['Fraser']['prop']theodosia_from_diversion_only = 1.429 # see TheodosiaWOScottydef write_file(day, runoff): "keep it small and simple, runoff only" notebook = 'ProductionDailyRiverNCfile.ipynb' coords = { 'x' : range(398), 'y' : range(898), 'time_counter' : [0], } var_attrs = {'units': 'kg m-2 s-1', 'long_name': 'runoff_flux'} year = day.year month = day.month day = day.day # set up filename to follow NEMO conventions filename = f'ncfiles/R202108Dailies_y{year}m{month:02}d{day:02}.nc' print (filename) netcdf_title = f'Rivers for y{year}m{month:02}d{day:02}' ds_attrs = { 'acknowledgements': 'Based on river fit', 'creator_email': 'sallen@eoas.ubc.ca', 'creator_name': 'Salish Sea MEOPAR Project Contributors', 'creator_url': 'https://salishsea-meopar-docs.readthedocs.org/', 'institution': 'UBC EOAS', 'institution_fullname': ( 'Earth, Ocean & Atmospheric Sciences,' ' University of British Columbia' ), 'title': netcdf_title, 'notebook': notebook, 'rivers_base': prop_dict_name, 'summary': f'Daily Runoff for Bathymetry 202108', 'history': ( '[{}] File creation.' .format(dt.datetime.today().strftime('%Y-%m-%d')) ) } runoffs = np.empty((1, runoff.shape[0], runoff.shape[1])) runoffs[0] = runoff da = xr.DataArray( data = runoffs, name='rorunoff', dims=('time_counter', 'y', 'x'), coords = coords, attrs = var_attrs) ds = xr.Dataset( data_vars={ 'rorunoff': da}, coords = coords, attrs = ds_attrs ) encoding = {var: {'zlib': True} for var in ds.data_vars} ds.to_netcdf(filename, unlimited_dims=('time_counter'), encoding=encoding,) def calculate_watershed_flows(dateneeded, config): flows = {} for name in names: print (name) if rivers_for_watershed[name]['secondary'] == 'False': print ('no secondary') flows[name] = do_a_pair(name, watershed_from_river, dateneeded, rivers_for_watershed[name]['primary'], False, config) elif name == 'fraser': flows['Fraser'], flows['nonFraser'] = do_fraser(watershed_from_river, dateneeded, rivers_for_watershed[name]['primary'], rivers_for_watershed[name]['secondary'], config) else: flows[name] = do_a_pair(name, watershed_from_river, dateneeded, rivers_for_watershed[name]['primary'], True, config, rivers_for_watershed[name]['secondary']) if name == 'fraser': print (flows['Fraser']) else: print (flows[name]) print ('files read') return flowsdef create_runoff_array(flows, prop_dict, horz_area): runoff = np.zeros((horz_area.shape[0], horz_area.shape[1])) run_depth = np.ones_like(runoff) run_temp = np.empty_like(runoff) for name in names: if name == 'fraser': for key in prop_dict[name]: if "Fraser" in key: flux = flows['Fraser'].flatten()[0] subarea = fraserratio else: flux = flows['nonFraser'].flatten()[0] subarea = 1 - fraserratio river = prop_dict['fraser'][key] runoff = rivertools.fill_runoff_array(flux*river['prop']/subarea, river['i'], river['di'], river['j'], river['dj'], river['depth'], runoff, run_depth, horz_area)[0] else: flowtoday = flows[name].flatten()[0] runoff, run_depth, run_temp = rivertools.put_watershed_into_runoff('constant', horz_area, flowtoday, runoff, run_depth, run_temp, prop_dict[name]) return runoffflows = calculate_watershed_flows(dateneeded, config) horz_area = get_area(config) runoff = create_runoff_array(flows, rivers.prop_dict, horz_area) write_file(dateneeded, runoff, bathy_type, prop_dict_name, config) # ## Plotting and Checking # In[5]: import matplotlib.pyplot as plt import numpy as np import xarray as xr # In[6]: bathy = xr.open_dataset('../../grid/bathymetry_202108.nc') # In[7]: imin, imax = 0, 898 jmin, jmax = 0, 394 jj = range(jmax) ii = range(imax) jjm, iim = np.meshgrid(jj, ii) fig, ax = plt.subplots(1, 1, figsize=(4, 9)) ax.contourf(bathy.Bathymetry[imin:imax, jmin:jmax], cmap='winter_r') ax.scatter(jjm[runoff[:, :jmax]>0], iim[runoff[:, :jmax]>0], s=runoff[:, :jmax][runoff[:, :jmax]>0]*1000, color='tab:red'); # In[8]: def nemo_yyyymmdd(data_date): return data_date.format("[y]YYYY[m]MM[d]DD") # ### Compare Subsequent Day's Runoff Forcing Files # In[9]: compare = xr.open_dataset(f'/results/forcing/rivers/R202108Dailies_{nemo_yyyymmdd(dateneeded.shift(days=-1))}.nc') readitin = xr.open_dataset(f'/tmp/R202108Dailies_{nemo_yyyymmdd(dateneeded)}.nc') fluxarray = np.array(readitin.rorunoff[0, :, :jmax]) climatearray = np.array(compare.rorunoff[0, :, :jmax]) fig, axs = plt.subplots(1, 3, figsize=(12, 9)) for ax in axs: ax.contourf(bathy.Bathymetry[imin:imax, jmin:jmax], cmap='winter_r') axs[1].scatter(jjm[fluxarray>0], iim[fluxarray>0], s=fluxarray[fluxarray>0]*1000, color='r') axs[0].scatter(jjm[climatearray>0], iim[climatearray>0], s=climatearray[climatearray>0]*1000, color='r') axs[2].scatter(jjm[fluxarray>climatearray], iim[fluxarray>climatearray], s=(fluxarray[fluxarray>climatearray]-climatearray[fluxarray>climatearray])*1000, color='tab:red') axs[2].scatter(jjm[fluxarray0], iim[fluxarray>0], s=fluxarray[fluxarray>0]*1000, color='r') axs[0].scatter(jjm[climatearray>0], iim[climatearray>0], s=climatearray[climatearray>0]*1000, color='r') axs[2].scatter(jjm[fluxarray>climatearray], iim[fluxarray>climatearray], s=(fluxarray[fluxarray>climatearray]-climatearray[fluxarray>climatearray])*1000, color='tab:red') axs[2].scatter(jjm[fluxarray