#!/usr/bin/env python # coding: utf-8 # This notebook creates daily forcing files for the sea surface height (hourly frequency) at Neah Bay. This can be used to create "obs" or "hindcast" forcing files for nowcasts in the event of a automation system error. # # Observations: NOAA # # Tidal predictions: calculated with t_tide based on NOAA time series. Tidal predictions do not include the long period constituents (Sa,Ssa,etc). # SEA note to self: use env py36 # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib.pyplot as plt import netCDF4 as NC import numpy as np import arrow from dateutil import tz import datetime from salishsea_tools import nc_tools from nowcast.figures import figures, shared import os import csv # # Observations and tidal predictions # Begin by loading Neah Bay water level observations and tidal predictions. # # https://tidesandcurrents.noaa.gov/waterlevels.html?id=9443090 # In[2]: def get_obs_tides(station, start_date, end_date): station_no = figures.SITES[station]['stn_no'] obs = figures.get_NOAA_wlevels(station_no, start_date, end_date) tide = shared.get_tides(station, path='../tidal_predictions/') print(obs.time[0], obs.time[-1]) return obs, tide # In[3]: def plot_obs_tides(ax, date, obs, tide): ax.plot(obs.time, obs.wlev, 'o',label='obs') ax.plot(tide.time, tide.pred_all,'r',lw=2,label='tides') ax.legend(loc=0) ax.set_ylabel('Water level [m]') ax.axis([date, date +datetime.timedelta(days=1),-3,3,]) # # Interpolate data to on the hour # In[4]: def inter_hourly(date, obs, tide): #create houly times t1 = date.replace(tzinfo=tz.tzutc()) t2 = t1 + datetime.timedelta(days=1) hourlys = [t1 + datetime.timedelta(hours=hour) for hour in np.arange(0,(t2-t1).total_seconds()/3600)] print(hourlys[0], hourlys[-1]) obs_interp = shared.interp_to_model_time(hourlys, obs.wlev, obs.time) obs_interp = np.array(obs_interp) tides_interp = shared.interp_to_model_time(hourlys, tide.pred_all, tide.time) tides_interp = np.array(tides_interp) anom = obs_interp-tides_interp return hourlys, obs_interp, tides_interp, anom # In[5]: def plot_hourlys(ax, hourlys, obs_interp, tides_interp, anom): ax.plot(hourlys, obs_interp, 'o',label='obs') ax.plot(hourlys, tides_interp, 'r', lw=2,label='tides') ax.plot(hourlys, anom,'-k',label='anom') ax.legend(loc=0) ax.set_ylabel('Water level [m]') # In[6]: # Use this cell to test against a nowcast generated file testfile = NC.Dataset('/results/forcing/sshNeahBay/obs/ssh_y2017m06d17.nc', 'r') ssh = testfile.variables['sossheig'][:] testfile.close() print(ssh.shape) plt.plot(ssh[:, 0, 5]) plt.plot(anom[:]) plt.plot(ssh[:, 0, 5] - anom[:]) # # Save as a NetCDF # Follow Susan's SSH notebook for this. Make a new netcdf file for this day. I will save the anom at each point along the western boundary. # Get some preliminary data first: bathymetry, indices of the edges. # In[7]: startj = 384 endj = 471 lengthj = endj-startj r = 1 fB = NC.Dataset('/results/nowcast-sys/NEMO-forcing/grid/bathymetry_201702.nc','r') lat = fB.variables['nav_lat'][:] lon = fB.variables['nav_lon'][:] fB.close() print(lat.shape) # A function for saving the netcdf file. # In[8]: def prepare_netcdf(ssh_file, count, ssh, date): filename = date.strftime('ssh_y%Ym%md%d.nc') # dataset attributes nc_tools.init_dataset_attrs( ssh_file, title='Juan de Fuca SSH hourly values', notebook_name='SSH_NeahBay', nc_filepath='/results/forcing/sshNeahBay/hindcast/' + filename, comment='Neah Bay observed anomaly. Done in hindcast.') #dimensions ssh_file.createDimension('xbT', lengthj*r) ssh_file.createDimension('yb', 1) ssh_file.createDimension('time_counter', None) # variables # time_counter time_counter = ssh_file.createVariable('time_counter', 'float32', ('time_counter')) time_counter.long_name = 'Time axis' time_counter.axis = 'T' time_counter.units = 'hour since 00:00:00 on {}'.format(date.strftime('%d/%m/%Y')) # nav_lat and nav_lon nav_lat = ssh_file.createVariable('nav_lat','float32',('yb','xbT')) nav_lat.long_name = 'Latitude' nav_lat.units = 'degrees_north' nav_lon = ssh_file.createVariable('nav_lon','float32',('yb','xbT')) nav_lon.long_name = 'Longitude' nav_lon.units = 'degrees_east' # ssh sossheig = ssh_file.createVariable('sossheig', 'float32', ('time_counter','yb','xbT'), zlib=True) sossheig.units = 'm' sossheig.long_name = 'Sea surface height' sossheig.coordinates = 'nav_lon nav_lat time_counter' sossheig.grid = 'SalishSea2' # vobtcrtx, vobtcrty vobtcrtx = ssh_file.createVariable('vobtcrtx', 'float32', ('time_counter','yb','xbT'), zlib=True) vobtcrtx.units = 'm/s' vobtcrtx.long_name = 'Barotropic U Velocity- ZEROD' vobtcrtx.grid = 'SalishSea2' vobtcrty = ssh_file.createVariable('vobtcrty', 'float32', ('time_counter','yb','xbT'), zlib=True) vobtcrty.units = 'm/s' vobtcrty.long_name = 'Barotropic V Velocity- ZEROD' vobtcrty.grid = 'SalishSea2' # nbidta, ndjdta, ndrdta nbidta = ssh_file.createVariable('nbidta', 'int32' , ('yb','xbT'), zlib=True) nbidta.long_name = 'i grid position' nbidta.units = 1 nbjdta = ssh_file.createVariable('nbjdta', 'int32' , ('yb','xbT'), zlib=True) nbjdta.long_name = 'j grid position' nbjdta.units = 1 nbrdta = ssh_file.createVariable('nbrdta', 'int32' , ('yb','xbT'), zlib=True) nbrdta.long_name = 'position from boundary' nbrdta.units = 1 for ir in range(0,r): nav_lat[0,ir*lengthj:(ir+1)*lengthj] = lat[startj:endj,ir] nav_lon[0,ir*lengthj:(ir+1)*lengthj] = lon[startj:endj,ir] nbidta[0,ir*lengthj:(ir+1)*lengthj] = ir nbjdta[0,ir*lengthj:(ir+1)*lengthj] = range(startj,endj) nbrdta[0,ir*lengthj:(ir+1)*lengthj] = ir for ib in range(0,lengthj*r): sossheig[0:count,0,ib] = ssh[0:count] time_counter[0:count] = range(1,count+1) vobtcrtx[0:count,0,ib] = 0*np.ones(count) vobtcrty[0:count,0,ib] = 0*np.ones(count) # ## Driver Cell ## # In[ ]: #ssh_file.close() # In[9]: station = 'Neah Bay'; nhours = 24 start_date = arrow.get(2016, 11, 1) end_date = arrow.get(2017, 1, 31) print (start_date.format('DD-MMM-YYYY'), end_date.format('DD-MMM-YYYY')) for day in arrow.Arrow.range('day', start_date, end_date): date = day.format('DD-MMM-YYYY') obs, tide = get_obs_tides(station, date, date) hourlys, obs_interp, tides_interp, anom = inter_hourly(day.datetime, obs, tide) filename = day.datetime.strftime('ssh_y%Ym%md%d.nc') ssh_file = NC.Dataset(filename, 'w', zlib=True) prepare_netcdf(ssh_file, nhours, anom, day.datetime) ssh_file.close() fig, axs = plt.subplots(1,2, figsize=(10, 5)) plot_obs_tides(axs[0], day.datetime, obs, tide) plot_hourlys(axs[1], hourlys, obs_interp, tides_interp, anom) # Check the NetCDF files # # A quick check that the data is saved in the netcdf file as expected. # In[10]: f= NC.Dataset(filename,'r'); for dim in f.dimensions.values(): print (dim) ssh=f.variables['sossheig']; us=f.variables['vobtcrtx']; vs=f.variables['vobtcrty']; print( us.shape) print (us[1,0,:]) print (vs[:,0,:]) mn = ssh[:].min(); print (mn) mx = ssh[:].max(); print (mx) fig, ((ax_net,ax_data)) = plt.subplots(1, 2, figsize=(14,4)) ax_net.plot(ssh[:,0,0]) ax_net.set_xlabel(filename) ax_data.plot(hourlys,anom) print(ssh.shape) # This looks good so let's move the files out of my working directory and into the forcing directory. # In[11]: srcdir='.' dstdir='/results/forcing/sshNeahBay/hindcast/' import shutil for basename in os.listdir(srcdir): if basename.endswith('.nc'): pathname = os.path.join(srcdir, basename) if os.path.isfile(pathname): shutil.copy2(pathname, dstdir) # You can delete the copy in your working directory now. # In[ ]: