#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import xarray as xr import pandas as pd from salishsea_tools import viz_tools, places, visualisations from matplotlib import pyplot as plt, dates from datetime import datetime, timedelta from calendar import month_name from scipy.io import loadmat from tqdm.notebook import tqdm from salishsea_tools import nc_tools from dask.diagnostics import ProgressBar import cmocean from scipy.stats import sem import scipy.stats as stats get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: plt.rcParams.update({'font.size': 12, 'axes.titlesize': 'medium'}) # ### Load files from monthly averages # In[3]: #years, months, data monthly_array_temp_slice = np.zeros([14,12,50,50]) # Load monthly averages mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')] years, variables = range(2007, 2021), ['votemper'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} # Loop through years for year in [2007,2008,2009,2010,2011,2012,2016,2017,2018,2019,2020]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.votemper.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_temp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension for var in ['votemper']: data[var].append(ds.votemper.isel(deptht=0, **slc).values) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # Loop through years for wrap years for year in [2013,2014,2015]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r_wrap/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.votemper.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_temp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension for var in ['votemper']: data[var].append(ds.votemper.isel(deptht=0, **slc).values) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # In[4]: monthly_array_temp_slice[monthly_array_temp_slice == 0 ] = np.nan monthly_array_temp_slicemean = \ np.nanmean(np.nanmean(monthly_array_temp_slice, axis = 2),axis = 2) print(np.shape(monthly_array_temp_slicemean)) # ### Plot Seasonal Cycles for Individual Years # In[5]: #plot monthly means for all years fig, ax = plt.subplots(figsize=(15, 5)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] for i in range(0,7): ax.plot(xticks, monthly_array_temp_slicemean[i,:],label=2007+i) ax.set_title('Central SoG Mesozooplankton Seasonal Cycle',fontsize=18) ax.legend(frameon=False) ax.set_ylim(0,25) ax.set_ylabel('\u03bcmol N') for i in range(7,14): ax.plot(xticks, monthly_array_temp_slicemean[i,:],linestyle='--',label=2007+i) ax.set_title('Surface Temperature',fontsize=18) ax.legend(frameon=False,bbox_to_anchor=(1, 1)) ax.set_ylim(4,22) ax.set_ylabel('Degrees C') plt.axhline(y=12, color='grey', linestyle='-.') # ### Select 4 warmest and 4 coldest years; leave NPGO "neutral" years out # In[6]: ## Coldest years = 2008, 2010, 2011, 2012 NPGO_C=(((+monthly_array_temp_slicemean[1,:]+\ monthly_array_temp_slicemean[3,:]+\ monthly_array_temp_slicemean[4,:]+monthly_array_temp_slicemean[5,:])/4)) # In[7]: ## Warmest years = 2015, 2018, 2019, 2020 NPGO_W=(((monthly_array_temp_slicemean[8,:]+\ monthly_array_temp_slicemean[11,:]+monthly_array_temp_slicemean[12,:]+\ monthly_array_temp_slicemean[13,:])/4)) # # In[8]: ## Plot the coldest and warmest years only; Supp Fig. S5 fig, ax = plt.subplots(figsize=(14, 2)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_temp_slicemean[1,:],color='b',linestyle='-',label='2008') ax.plot(xticks, monthly_array_temp_slicemean[3,:],color='b',linestyle='--',label='2010') ax.plot(xticks, monthly_array_temp_slicemean[4,:],color='b',linestyle='-.',label='2011') ax.plot(xticks, monthly_array_temp_slicemean[5,:],color='b',linestyle=':',label='2012') ax.plot(xticks, monthly_array_temp_slicemean[8,:],color='r',linestyle='-',label='2015') ax.plot(xticks, monthly_array_temp_slicemean[11,:],color='r',linestyle='--',label='2018') ax.plot(xticks, monthly_array_temp_slicemean[12,:],color='r',linestyle='-.',label='2019') ax.plot(xticks, monthly_array_temp_slicemean[13,:],color='r',linestyle=':',label='2020') ax.set_title('Surface Temperature',fontsize=14) ax.legend(frameon=False,loc='center left', bbox_to_anchor=(1, 0.5),fontsize=10) ax.set_ylim(0,22) ax.set_ylabel('Degrees C') ax.xaxis.set_tick_params(labelsize=12) ax.yaxis.set_tick_params(labelsize=12) ax.set_xticklabels([]) # ### Data for Figure 4: Calculate monthly standard error values for cold and warm years # In[9]: NPGO_W_years=[monthly_array_temp_slicemean[8,:],monthly_array_temp_slicemean[11,:],monthly_array_temp_slicemean[12,:],monthly_array_temp_slicemean[13,:]] # In[10]: sem(NPGO_W_years) # In[11]: NPGO_W_SEM=[0.10085818, 0.4890846 , 0.37887922, 0.15664109, 0.40595597, 0.20241134, 0.40119105, 0.67801848, 0.50271186, 0.33871933, 0.18173575, 0.33064517] # In[12]: NPGO_C_years=[monthly_array_temp_slicemean[1,:], monthly_array_temp_slicemean[3,:], monthly_array_temp_slicemean[4,:],monthly_array_temp_slicemean[5,:]] # In[13]: sem(NPGO_C_years) # In[14]: NPGO_C_SEM=[0.21721438, 0.33888804, 0.33143871, 0.15566903, 0.06565611, 0.28891357, 0.22434856, 0.30571173, 0.24001654, 0.23185627, 0.14982848, 0.25240781] # In[16]: ## Preliminary Figure 4a fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] border = 0.25 ax.errorbar(xticks, NPGO_C, yerr= NPGO_C_SEM, capsize=3,label='NPGO+ coldest',linewidth=2) ax.errorbar(xticks, NPGO_W,yerr= NPGO_W_SEM, capsize=3,linestyle='--',label='NPGO- warmest',color='r',linewidth=2) ax.set_title('Sea Surface Temperature',fontsize=18) ax.legend(frameon=False,fontsize=14) ax.set_ylim(0,25) ax.set_ylabel('Degrees C',fontsize=14) ax.xaxis.set_tick_params(labelsize=14) ax.yaxis.set_tick_params(labelsize=14) ax.set_xticklabels([]) a=2 b=5 c=5 d=8 ax.text(-.4, 20, '(a)', fontsize=15, color='k') #plt.fill([a, a, b, b], [0, 25, 25, 0], color = 'lightgreen', alpha = 0.1) #plt.fill([c, c, d, d], [0, 25, 25, 0], color = 'wheat', alpha = 0.2) #plt.savefig('Fig3a_SST.png', bbox_inches='tight',dpi=1000,transparent=False) # ### Data for calculating seasonal mean values for box plots # In[17]: Spring_C=(((monthly_array_temp_slicemean[(1,3,4,5),2]+ monthly_array_temp_slicemean[(1,3,4,5),3]+monthly_array_temp_slicemean[(1,3,4,5),4]))/3) # # In[18]: Spring_W=(((monthly_array_temp_slicemean[(8,11,12,13),2]+ monthly_array_temp_slicemean[(8,11,12,13),3]+monthly_array_temp_slicemean[(8,11,12,13),4]))/3) # # In[19]: Summer_C=(((monthly_array_temp_slicemean[(1,3,4,5),5]+ monthly_array_temp_slicemean[(1,3,4,5),6]+monthly_array_temp_slicemean[(1,3,4,5),7]))/3) # # In[20]: Spring_W # In[22]: Summer_W=(((monthly_array_temp_slicemean[(8,11,12,13),5]+ monthly_array_temp_slicemean[(8,11,12,13),6]+monthly_array_temp_slicemean[(8,11,12,13),7]))/3) # # In[23]: Summer_W # In[24]: ## Preliminary figure 4a def color_boxplot(data, color, pos=[0], ax=None): ax = ax or plt.gca() bp = ax.boxplot(data, patch_artist=True, showmeans=False, positions=pos,widths=0.4) for item in ['boxes']: plt.setp(bp[item], color=color) for item in ['whiskers', 'fliers', 'medians', 'caps']: plt.setp(bp[item], color='k') data1 = [Spring_C] data2 = [Spring_W] data3 = [Summer_C] data4 = [Summer_W] fig, ax = plt.subplots(figsize=(3,3)) bp1 = color_boxplot(data1, 'royalblue', [1]) bp2 = color_boxplot(data2, 'r', [1.5]) bp3 = color_boxplot(data3, 'royalblue', [2.5]) bp4 = color_boxplot(data4, 'r', [3]) #ax.autoscale() ax.set(xticks=[1.25,2.75], xticklabels=['Spring','Summer']) ax.set_ylim(8,20) ax.set_ylabel('Degrees C', fontsize=14) ax.xaxis.set_tick_params(labelsize=14) ax.yaxis.set_tick_params(labelsize=14) #ax.legend([bp1["boxes"], bp2["boxes"], ['A', 'B'], loc='upper right') #plt.savefig('Fig3a_SSTboxplots.png', bbox_inches='tight',dpi=1000,transparent=True) plt.show() # ### t tests for differences between spring and summer of cold and warm years # In[25]: stats.ttest_ind(a=Spring_C, b=Spring_W, equal_var=True) # In[26]: stats.ttest_ind(a=Summer_C, b=Summer_W, equal_var=True) # In[ ]: