#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import xarray as xr import pandas as pd from salishsea_tools import viz_tools, places, visualisations from matplotlib import pyplot as plt, dates from datetime import datetime, timedelta from calendar import month_name from scipy.io import loadmat from tqdm.notebook import tqdm from salishsea_tools import nc_tools from dask.diagnostics import ProgressBar import cmocean get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: plt.rcParams.update({'font.size': 12, 'axes.titlesize': 'medium'}) # ## SST # In[3]: ## Data for original cold and warm years monthly_array_temp_slice = np.zeros([14,12,50,50]) # Load monthly averages mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')] years, variables = range(2007, 2021), ['votemper'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} ### 2008 original temp # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.votemper.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_temp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension for var in ['votemper']: data[var].append(ds.votemper.isel(deptht=0, **slc).values) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) ### 2019 original # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.votemper.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_temp_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension for var in ['votemper']: data[var].append(ds.votemper.isel(deptht=0, **slc).values) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # In[4]: monthly_array_temp_slice[monthly_array_temp_slice == 0 ] = np.nan monthly_array_temp_slicemean = \ np.nanmean(np.nanmean(monthly_array_temp_slice, axis = 2),axis = 2) print(np.shape(monthly_array_temp_slicemean)) # In[5]: ## Data for Experiments 1 and 2 monthly_array_temp_exp_slice = np.zeros([14,12,50,50]) # Load monthly averages mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')] years, variables = range(2007, 2021), ['votemper'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 7): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan08_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.votemper.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_temp_exp_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['votemper']: data[var].append(ds.votemper.isel(deptht=0, **slc).values) for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(7, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul08_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.votemper.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_temp_exp_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['votemper']: data[var].append(ds.votemper.isel(deptht=0, **slc).values) ### ## Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 7): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan19_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.votemper.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_temp_exp_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['votemper']: data[var].append(ds.votemper.isel(deptht=0, **slc).values) for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(7, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul19_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.votemper.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_temp_exp_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['votemper']: data[var].append(ds.votemper.isel(deptht=0, **slc).values) # In[6]: monthly_array_temp_exp_slice[monthly_array_temp_exp_slice == 0 ] = np.nan monthly_array_temp_exp_slicemean = \ np.nanmean(np.nanmean(monthly_array_temp_exp_slice, axis = 2),axis = 2) print(np.shape(monthly_array_temp_exp_slicemean)) # In[7]: fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_temp_slicemean[12,:],color='r',linestyle='-',label='Original WY') ax.plot(xticks, monthly_array_temp_exp_slicemean[12,:],color='k',linestyle='-.',label='WY with CY increased thresh') ax.set_title('WY SST with CY Increased Threshold',fontsize=18) ax.legend(frameon=False,loc=1) ax.set_ylim(0,25) ax.set_ylabel('Degrees C') # In[8]: monthly_array_temp_exp_slicemean[12,:] # In[9]: fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_temp_slicemean[1,:],color='b',linestyle='-',label='Original CY') ax.plot(xticks, monthly_array_temp_exp_slicemean[1,:],color='k',linestyle='-.',label='CY with WY increased thresh') ax.set_title('CY SST with WY Increased Threshold',fontsize=18) ax.legend(frameon=False,loc=1) ax.set_ylim(0,25) ax.set_ylabel('Degrees C') # In[10]: monthly_array_temp_exp_slicemean[1,:] # In[ ]: # ## Surface PAR # In[11]: ## PAR data for original years monthly_array_PAR_slice = np.zeros([14,12,50,50]) # Load monthly averages mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')] years, variables = range(2007, 2021), ['PAR'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} ### 2008 original temp for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' with xr.open_dataset(prefix + '_carp_T.nc') as ds: q = ds.PAR.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_PAR_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension for var in ['PAR']: data[var].append(ds.PAR.isel(deptht=0, **slc).values) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) ### 2019 original for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_carp_T.nc') as ds: q = ds.PAR.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_PAR_slice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension for var in ['PAR']: data[var].append(ds.PAR.isel(deptht=0, **slc).values) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # In[12]: monthly_array_PAR_slice[monthly_array_PAR_slice == 0 ] = np.nan monthly_array_PAR_slicemean = \ np.nanmean(np.nanmean(monthly_array_PAR_slice, axis = 2),axis = 2) print(np.shape(monthly_array_PAR_slicemean)) # In[13]: # PAR data for experiments 1 and 2 monthly_array_PAR_exp_slice = np.zeros([14,12,50,50]) # Load monthly averages mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')] years, variables = range(2007, 2021), ['PAR'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 7): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan08_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_carp_T.nc') as ds: q = ds.PAR.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_PAR_exp_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['PAR']: data[var].append(ds.PAR.isel(deptht=0, **slc).values) for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(7, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul08_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_carp_T.nc') as ds: q = ds.PAR.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_PAR_exp_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['PAR']: data[var].append(ds.PAR.isel(deptht=0, **slc).values) ### # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 7): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan19_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_carp_T.nc') as ds: q = ds.PAR.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_PAR_exp_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['PAR']: data[var].append(ds.PAR.isel(deptht=0, **slc).values) for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(7, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul19_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_carp_T.nc') as ds: q = ds.PAR.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_PAR_exp_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['PAR']: data[var].append(ds.PAR.isel(deptht=0, **slc).values) # In[14]: monthly_array_PAR_exp_slice[monthly_array_PAR_exp_slice == 0 ] = np.nan monthly_array_PAR_exp_slicemean = \ np.nanmean(np.nanmean(monthly_array_PAR_exp_slice, axis = 2),axis = 2) print(np.shape(monthly_array_PAR_exp_slicemean)) # In[15]: fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_PAR_slicemean[12,:],color='r',linestyle='-',label='Original WY') ax.plot(xticks, monthly_array_PAR_exp_slicemean[12,:],color='k',linestyle='-.',label='WY with CY increased thresh') ax.set_title('WY PAR with CY Increased Threshold',fontsize=18) ax.legend(frameon=False,loc=1) ax.set_ylim(0,150) ax.set_ylabel('m$^{-2}$') # In[16]: monthly_array_PAR_exp_slicemean[12,:] # In[17]: fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_PAR_slicemean[1,:],color='b',linestyle='-',label='Original CY') ax.plot(xticks, monthly_array_PAR_exp_slicemean[1,:],color='k',linestyle='-.',label='CY with WY increased thresh') ax.set_title('CY PAR with WY Increased Threshold',fontsize=18) ax.legend(frameon=False,loc=1) ax.set_ylim(0,150) ax.set_ylabel('m$^{-2}$') # In[18]: monthly_array_PAR_exp_slicemean[1,:] # In[ ]: # ## Halocline Strength # In[19]: # Halocline Strength data for original years monthly_array_halocline_depth_orig_SSslice = np.zeros([14,12,50,50]) monthly_array_halocline_strength_orig_SSslice = np.zeros([14,12,50,50]) mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask,depth = [mask[var].isel(**slc).values for var in ('e3t_0', 'tmask','gdept_0')] years, variables = range(2007, 2021), ['halocline','strength'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.vosaline.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_halocline_depth_orig_SSslice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension sal=ds.vosaline.isel(**slc).values #get the gradient in salinity sal_grad = np.zeros_like(sal) for i in range(0, (np.shape(sal_grad)[1]-1)): sal_grad[:,i,:,:] =(sal[:,i,:,:]-sal[:,i+1,:,:])/(depth[:,i,:,:]-depth[:,i+1,:,:]) #print(sal_grad) loc_max = np.argmax(sal_grad,axis=1) depths=np.tile(depth,[np.shape(sal)[0],1,1,1]) h1=np.take_along_axis(depths, np.expand_dims(loc_max, axis=1), axis=1) h2=np.take_along_axis(depths, np.expand_dims(loc_max+1, axis=1), axis=1) sals=np.tile(sal,[np.shape(sal)[0],1,1,1]) s1=np.take_along_axis(sals, np.expand_dims(loc_max, axis=1), axis=1) s2=np.take_along_axis(sals, np.expand_dims(loc_max+1, axis=1), axis=1) #halocline is halfway between the two cells halocline = 0.5*(h1+h2) strength = (s2-s1)/(h2-h1) data['halocline'].append(halocline) data['strength'].append(strength) monthly_array_halocline_depth_orig_SSslice[year-2007,month-1,:,:]=halocline monthly_array_halocline_strength_orig_SSslice[year-2007,month-1,:,:]=strength # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.vosaline.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_halocline_depth_orig_SSslice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension sal=ds.vosaline.isel(**slc).values #get the gradient in salinity sal_grad = np.zeros_like(sal) for i in range(0, (np.shape(sal_grad)[1]-1)): sal_grad[:,i,:,:] =(sal[:,i,:,:]-sal[:,i+1,:,:])/(depth[:,i,:,:]-depth[:,i+1,:,:]) #print(sal_grad) loc_max = np.argmax(sal_grad,axis=1) depths=np.tile(depth,[np.shape(sal)[0],1,1,1]) h1=np.take_along_axis(depths, np.expand_dims(loc_max, axis=1), axis=1) h2=np.take_along_axis(depths, np.expand_dims(loc_max+1, axis=1), axis=1) sals=np.tile(sal,[np.shape(sal)[0],1,1,1]) s1=np.take_along_axis(sals, np.expand_dims(loc_max, axis=1), axis=1) s2=np.take_along_axis(sals, np.expand_dims(loc_max+1, axis=1), axis=1) #halocline is halfway between the two cells halocline = 0.5*(h1+h2) strength = (s2-s1)/(h2-h1) data['halocline'].append(halocline) data['strength'].append(strength) monthly_array_halocline_depth_orig_SSslice[year-2007,month-1,:,:]=halocline monthly_array_halocline_strength_orig_SSslice[year-2007,month-1,:,:]=strength # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # # Calculate 5 year mean and anomalies # for var in variables: # aggregates[var][‘mean’] = np.concatenate([aggregates[var][year][None, ...] for year in years]).mean(axis=0) # for year in years: aggregates[var][year] = aggregates[var][year] - aggregates[var][‘mean’] # In[20]: monthly_array_halocline_strength_orig_SSslice[monthly_array_halocline_strength_orig_SSslice == 0 ] = np.nan monthly_array_halocline_strength_orig_SSslicemean = \ np.nanmean(np.nanmean(monthly_array_halocline_strength_orig_SSslice, axis = 2),axis = 2) print(np.shape(monthly_array_halocline_strength_orig_SSslicemean)) # In[21]: # Data for Experiments 1 and 2 monthly_array_halocline_depth_SSslice = np.zeros([14,12,50,50]) monthly_array_halocline_strength_SSslice = np.zeros([14,12,50,50]) mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask,depth = [mask[var].isel(**slc).values for var in ('e3t_0', 'tmask','gdept_0')] years, variables = range(2007, 2021), ['halocline','strength'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 7): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan08_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.vosaline.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_halocline_depth_SSslice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension sal=ds.vosaline.isel(**slc).values #get the gradient in salinity sal_grad = np.zeros_like(sal) for i in range(0, (np.shape(sal_grad)[1]-1)): sal_grad[:,i,:,:] =(sal[:,i,:,:]-sal[:,i+1,:,:])/(depth[:,i,:,:]-depth[:,i+1,:,:]) #print(sal_grad) loc_max = np.argmax(sal_grad,axis=1) depths=np.tile(depth,[np.shape(sal)[0],1,1,1]) h1=np.take_along_axis(depths, np.expand_dims(loc_max, axis=1), axis=1) h2=np.take_along_axis(depths, np.expand_dims(loc_max+1, axis=1), axis=1) sals=np.tile(sal,[np.shape(sal)[0],1,1,1]) s1=np.take_along_axis(sals, np.expand_dims(loc_max, axis=1), axis=1) s2=np.take_along_axis(sals, np.expand_dims(loc_max+1, axis=1), axis=1) #halocline is halfway between the two cells halocline = 0.5*(h1+h2) strength = (s2-s1)/(h2-h1) data['halocline'].append(halocline) data['strength'].append(strength) monthly_array_halocline_depth_SSslice[year-2007,month-1,:,:]=halocline monthly_array_halocline_strength_SSslice[year-2007,month-1,:,:]=strength # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(7, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul08_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.vosaline.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_halocline_depth_SSslice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension sal=ds.vosaline.isel(**slc).values #get the gradient in salinity sal_grad = np.zeros_like(sal) for i in range(0, (np.shape(sal_grad)[1]-1)): sal_grad[:,i,:,:] =(sal[:,i,:,:]-sal[:,i+1,:,:])/(depth[:,i,:,:]-depth[:,i+1,:,:]) #print(sal_grad) loc_max = np.argmax(sal_grad,axis=1) depths=np.tile(depth,[np.shape(sal)[0],1,1,1]) h1=np.take_along_axis(depths, np.expand_dims(loc_max, axis=1), axis=1) h2=np.take_along_axis(depths, np.expand_dims(loc_max+1, axis=1), axis=1) sals=np.tile(sal,[np.shape(sal)[0],1,1,1]) s1=np.take_along_axis(sals, np.expand_dims(loc_max, axis=1), axis=1) s2=np.take_along_axis(sals, np.expand_dims(loc_max+1, axis=1), axis=1) #halocline is halfway between the two cells halocline = 0.5*(h1+h2) strength = (s2-s1)/(h2-h1) data['halocline'].append(halocline) data['strength'].append(strength) monthly_array_halocline_depth_SSslice[year-2007,month-1,:,:]=halocline monthly_array_halocline_strength_SSslice[year-2007,month-1,:,:]=strength # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 7): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan19_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.vosaline.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_halocline_depth_SSslice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension sal=ds.vosaline.isel(**slc).values #get the gradient in salinity sal_grad = np.zeros_like(sal) for i in range(0, (np.shape(sal_grad)[1]-1)): sal_grad[:,i,:,:] =(sal[:,i,:,:]-sal[:,i+1,:,:])/(depth[:,i,:,:]-depth[:,i+1,:,:]) #print(sal_grad) loc_max = np.argmax(sal_grad,axis=1) depths=np.tile(depth,[np.shape(sal)[0],1,1,1]) h1=np.take_along_axis(depths, np.expand_dims(loc_max, axis=1), axis=1) h2=np.take_along_axis(depths, np.expand_dims(loc_max+1, axis=1), axis=1) sals=np.tile(sal,[np.shape(sal)[0],1,1,1]) s1=np.take_along_axis(sals, np.expand_dims(loc_max, axis=1), axis=1) s2=np.take_along_axis(sals, np.expand_dims(loc_max+1, axis=1), axis=1) #halocline is halfway between the two cells halocline = 0.5*(h1+h2) strength = (s2-s1)/(h2-h1) data['halocline'].append(halocline) data['strength'].append(strength) monthly_array_halocline_depth_SSslice[year-2007,month-1,:,:]=halocline monthly_array_halocline_strength_SSslice[year-2007,month-1,:,:]=strength # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(7, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul19_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_grid_T.nc') as ds: q = ds.vosaline.isel(deptht=0, **slc).values q2 = q[0,:,:] monthly_array_halocline_depth_SSslice[year-2007,month-1,:,:] = q2 #year2007 is index 0 along 1st dimension sal=ds.vosaline.isel(**slc).values #get the gradient in salinity sal_grad = np.zeros_like(sal) for i in range(0, (np.shape(sal_grad)[1]-1)): sal_grad[:,i,:,:] =(sal[:,i,:,:]-sal[:,i+1,:,:])/(depth[:,i,:,:]-depth[:,i+1,:,:]) #print(sal_grad) loc_max = np.argmax(sal_grad,axis=1) depths=np.tile(depth,[np.shape(sal)[0],1,1,1]) h1=np.take_along_axis(depths, np.expand_dims(loc_max, axis=1), axis=1) h2=np.take_along_axis(depths, np.expand_dims(loc_max+1, axis=1), axis=1) sals=np.tile(sal,[np.shape(sal)[0],1,1,1]) s1=np.take_along_axis(sals, np.expand_dims(loc_max, axis=1), axis=1) s2=np.take_along_axis(sals, np.expand_dims(loc_max+1, axis=1), axis=1) #halocline is halfway between the two cells halocline = 0.5*(h1+h2) strength = (s2-s1)/(h2-h1) data['halocline'].append(halocline) data['strength'].append(strength) monthly_array_halocline_depth_SSslice[year-2007,month-1,:,:]=halocline monthly_array_halocline_strength_SSslice[year-2007,month-1,:,:]=strength # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # # Calculate 5 year mean and anomalies # for var in variables: # aggregates[var][‘mean’] = np.concatenate([aggregates[var][year][None, ...] for year in years]).mean(axis=0) # for year in years: aggregates[var][year] = aggregates[var][year] - aggregates[var][‘mean’] # In[22]: monthly_array_halocline_strength_SSslice[monthly_array_halocline_strength_SSslice == 0 ] = np.nan monthly_array_halocline_strength_SSslicemean = \ np.nanmean(np.nanmean(monthly_array_halocline_strength_SSslice, axis = 2),axis = 2) print(np.shape(monthly_array_halocline_strength_SSslicemean)) # In[23]: fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_halocline_strength_orig_SSslicemean[12,:],color='r',linestyle='-',label='Original 2019') ax.plot(xticks, monthly_array_halocline_strength_SSslicemean[12,:],color='k',linestyle='-.',label='2019 with 2008 increased thresh') ax.set_title('WY Halocline with CY Increased Threshold',fontsize=18) ax.legend(frameon=False,loc=1) ax.set_ylim(0,5) ax.set_ylabel('g/kg m$^{-1}$') # In[24]: monthly_array_halocline_strength_SSslicemean[12,:] # In[25]: fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_halocline_strength_orig_SSslicemean[1,:],color='b',linestyle='-',label='Original CY') ax.plot(xticks, monthly_array_halocline_strength_SSslicemean[1,:],color='k',linestyle='-.',label='CY with WY increase thresh') ax.set_title('CY Halocline with WY Increased Threshold',fontsize=18) ax.legend(frameon=False,loc=1) ax.set_ylim(0,5) ax.set_ylabel('g/kg m$^{-1}$') # In[ ]: # In[26]: ### Depth-averaged Nutrients (0-10m) # In[27]: ### Nitrate data for original cold and warm years monthly_array_nitrate_orig_slice = np.zeros([14,12,50,50]) # Load monthly averages mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask = [mask[var].isel(z=slice(None, 10),**slc).values for var in ('e3t_0', 'tmask')] years, variables = range(2007, 2021), ['nitrate'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data q2 = q[0,:,:] monthly_array_nitrate_orig_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['nitrate']: data[var].append((ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data q2 = q[0,:,:] monthly_array_nitrate_orig_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['nitrate']: data[var].append((ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # # Calculate 5 year mean and anomalies # for var in variables: # aggregates[var][‘mean’] = np.concatenate([aggregates[var][year][None, ...] for year in years]).mean(axis=0) # for year in years: aggregates[var][year] = aggregates[var][year] - aggregates[var][‘mean’] # In[28]: monthly_array_nitrate_orig_slice[monthly_array_nitrate_orig_slice == 0 ] = np.nan monthly_array_nitrate_orig_slicemean = \ np.nanmean(np.nanmean(monthly_array_nitrate_orig_slice, axis = 2),axis = 2) print(np.shape(monthly_array_nitrate_orig_slicemean)) # In[29]: ### Silicon data for original cold and warm years monthly_array_silicon_orig_slice = np.zeros([14,12,50,50]) # Load monthly averages mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask = [mask[var].isel(z=slice(None, 10),**slc).values for var in ('e3t_0', 'tmask')] years, variables = range(2007, 2021), ['silicon'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data q2 = q[0,:,:] monthly_array_silicon_orig_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['silicon']: data[var].append((ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) ### ## Experimental Year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data q2 = q[0,:,:] monthly_array_silicon_orig_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['silicon']: data[var].append((ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # In[30]: monthly_array_silicon_orig_slice[monthly_array_silicon_orig_slice == 0 ] = np.nan monthly_array_silicon_orig_slicemean = \ np.nanmean(np.nanmean(monthly_array_silicon_orig_slice, axis = 2),axis = 2) print(np.shape(monthly_array_silicon_orig_slicemean)) # In[31]: ### Nitrate data for Experiments 1 and 2 monthly_array_nitrate_depthint_slice = np.zeros([14,12,50,50]) # Load monthly averages mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask = [mask[var].isel(z=slice(None, 10),**slc).values for var in ('e3t_0', 'tmask')] years, variables = range(2007, 2021), ['nitrate'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 7): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan08_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data q2 = q[0,:,:] monthly_array_nitrate_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['nitrate']: data[var].append((ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(7, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul08_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data q2 = q[0,:,:] monthly_array_nitrate_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['nitrate']: data[var].append((ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 7): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan19_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data q2 = q[0,:,:] monthly_array_nitrate_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['nitrate']: data[var].append((ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(7, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul19_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data q2 = q[0,:,:] monthly_array_nitrate_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['nitrate']: data[var].append((ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # # Calculate 5 year mean and anomalies # for var in variables: # aggregates[var][‘mean’] = np.concatenate([aggregates[var][year][None, ...] for year in years]).mean(axis=0) # for year in years: aggregates[var][year] = aggregates[var][year] - aggregates[var][‘mean’] # In[32]: monthly_array_nitrate_depthint_slice[monthly_array_nitrate_depthint_slice == 0 ] = np.nan monthly_array_nitrate_depthint_slicemean = \ np.nanmean(np.nanmean(monthly_array_nitrate_depthint_slice, axis = 2),axis = 2) print(np.shape(monthly_array_nitrate_depthint_slicemean)) # In[33]: ### Silicon data for Experiments 1 and 2 monthly_array_silicon_depthint_slice = np.zeros([14,12,50,50]) # Load monthly averages mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask = [mask[var].isel(z=slice(None, 10),**slc).values for var in ('e3t_0', 'tmask')] years, variables = range(2007, 2021), ['silicon'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 7): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan08_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data q2 = q[0,:,:] monthly_array_silicon_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['silicon']: data[var].append((ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(7, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul08_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data q2 = q[0,:,:] monthly_array_silicon_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['silicon']: data[var].append((ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 7): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan19_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data q2 = q[0,:,:] monthly_array_silicon_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['silicon']: data[var].append((ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(7, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul19_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data q2 = q[0,:,:] monthly_array_silicon_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['silicon']: data[var].append((ds[var].isel(deptht=slice(None, 10),**slc)*e3t*tmask).sum(axis=1)/((e3t*tmask).sum(axis=1)).data) # Concatenate months for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) # # Calculate 5 year mean and anomalies # for var in variables: # aggregates[var][‘mean’] = np.concatenate([aggregates[var][year][None, ...] for year in years]).mean(axis=0) # for year in years: aggregates[var][year] = aggregates[var][year] - aggregates[var][‘mean’] # In[34]: monthly_array_silicon_depthint_slice[monthly_array_silicon_depthint_slice == 0 ] = np.nan monthly_array_silicon_depthint_slicemean = \ np.nanmean(np.nanmean(monthly_array_silicon_depthint_slice, axis = 2),axis = 2) print(np.shape(monthly_array_silicon_depthint_slicemean)) # In[35]: fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_nitrate_orig_slicemean[12,:],color='r',linestyle='-',label='Original 2019') ax.plot(xticks, monthly_array_nitrate_depthint_slicemean[12,:],color='k',linestyle='-.',label='2019 with 2008 increased thresh') ax.set_title('WY Nitrate with CY Increased Threshold',fontsize=18) ax.legend(frameon=False,loc=4) ax.set_ylim(0,30) ax.set_ylabel('mmol N m$^{-2}$') # In[36]: monthly_array_nitrate_orig_slicemean[12,:] # In[37]: monthly_array_nitrate_depthint_slicemean[12,:] # In[38]: fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_silicon_orig_slicemean[12,:],color='r',linestyle='-',label='Original 2019') ax.plot(xticks, monthly_array_silicon_depthint_slicemean[12,:],color='k',linestyle='-.',label='2019 with 2008 increased thresh') ax.set_title('WY Silicon with CY Increased Threshold',fontsize=18) ax.legend(frameon=False,loc=4) ax.set_ylim(0,60) ax.set_ylabel('mmol N m$^{-2}$') # In[39]: monthly_array_silicon_orig_slicemean[12,:] # In[40]: monthly_array_silicon_depthint_slicemean[12,:] # In[ ]: # In[41]: fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_nitrate_orig_slicemean[1,:],color='b',linestyle='-',label='Original 2008') ax.plot(xticks, monthly_array_nitrate_depthint_slicemean[1,:],color='k',linestyle='-.',label='2008 with 2019 increased thresh') ax.set_title('CY Nitrate with WY Increased Threshold',fontsize=18) ax.legend(frameon=False,loc=4) ax.set_ylim(0,30) ax.set_ylabel('mmol N m$^{-2}$') # In[42]: monthly_array_nitrate_depthint_slicemean[1,:] # In[43]: fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_silicon_orig_slicemean[1,:],color='b',linestyle='-',label='Original 2008') ax.plot(xticks, monthly_array_silicon_depthint_slicemean[1,:],color='k',linestyle='-.',label='2008 with 2019 increased thresh') ax.set_title('CY Silicon with WY Increased Threshold',fontsize=18) ax.legend(frameon=False,loc=4) ax.set_ylim(0,60) ax.set_ylabel('mmol N m$^{-2}$') # In[44]: monthly_array_silicon_depthint_slicemean[1,:] # In[ ]: # ## Depth-integrated 0-100 m Diatoms # In[45]: ### Diatom data for original years monthly_array_diatoms_orig_slice = np.zeros([14,12,50,50]) # Load monthly averages mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')] years, variables = range(2007, 2021), ['diatoms'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} ### 2008 using higher temperature threshold # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data q2 = q[0,:,:] monthly_array_diatoms_orig_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['diatoms']: data[var].append(np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data) ### 2019 using higher temperature threshold # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data q2 = q[0,:,:] monthly_array_diatoms_orig_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['diatoms']: data[var].append(np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data) # In[46]: monthly_array_diatoms_orig_slice[monthly_array_diatoms_orig_slice == 0 ] = np.nan monthly_array_diatoms_orig_slicemean = \ np.nanmean(np.nanmean(monthly_array_diatoms_orig_slice, axis = 2),axis = 2) print(np.shape(monthly_array_diatoms_orig_slicemean)) # In[47]: #years, months, data monthly_array_diatoms_depthint_slice = np.zeros([14,12,50,50]) # Load monthly averages mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc') slc = {'y': slice(450,500), 'x': slice(250,300)} e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')] years, variables = range(2007, 2021), ['diatoms'] # Temporary list dict data = {} # Permanent aggregate dict aggregates = {var: {} for var in variables} monthlydat = {var: {} for var in variables} # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 7): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan08_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data q2 = q[0,:,:] monthly_array_diatoms_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['diatoms']: data[var].append(np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data) # Add experiment year for year in [2008]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(7, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul08_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data q2 = q[0,:,:] monthly_array_diatoms_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['diatoms']: data[var].append(np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data) # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(1, 7): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jan19_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data q2 = q[0,:,:] monthly_array_diatoms_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['diatoms']: data[var].append(np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data) # Add experiment year for year in [2019]: # Initialize lists for var in variables: data[var] = [] # Load monthly averages for month in range(7, 13): datestr = f'{year}{month:02d}' prefix = f'/data/sallen/results/MEOPAR/Karyn/01jul19_tsc/SalishSea_1m_{datestr}_{datestr}' # Load grazing variables with xr.open_dataset(prefix + '_ptrc_T.nc') as ds: q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data q2 = q[0,:,:] monthly_array_diatoms_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension for var in ['diatoms']: data[var].append(np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data) # # Calculate 5 year mean and anomalies # for var in variables: # aggregates[var][‘mean’] = np.concatenate([aggregates[var][year][None, ...] for year in years]).mean(axis=0) # for year in years: aggregates[var][year] = aggregates[var][year] - aggregates[var][‘mean’] # In[48]: monthly_array_diatoms_depthint_slice[monthly_array_diatoms_depthint_slice == 0 ] = np.nan monthly_array_diatoms_depthint_slicemean = \ np.nanmean(np.nanmean(monthly_array_diatoms_depthint_slice, axis = 2),axis = 2) print(np.shape(monthly_array_diatoms_depthint_slicemean)) # In[ ]: # In[49]: fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_diatoms_orig_slicemean[12,:],color='r',linestyle='-',label='Original 2019') ax.plot(xticks, monthly_array_diatoms_depthint_slicemean[12,:],color='k',linestyle='-.',label='2019 with 2008 increased thresh') ax.set_title('WY Diatoms (0-100 m) with CY Increased Threshold',fontsize=18) ax.legend(frameon=False,loc=1) ax.set_ylim(0,50) ax.set_ylabel('mmol N m$^{-2}$') # In[50]: fig, ax = plt.subplots(figsize=(15, 3)) bbox = {'boxstyle': 'round', 'facecolor': 'w', 'alpha': 0.9} cmap = plt.get_cmap('tab10') palette = [cmap(0), cmap(0.2), 'k', cmap(0.1), cmap(0.3)] xticks=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',"Dec"] ax.plot(xticks, monthly_array_diatoms_orig_slicemean[1,:],color='b',linestyle='-',label='Original 2008') ax.plot(xticks, monthly_array_diatoms_depthint_slicemean[1,:],color='k',linestyle='-.',label='2008 with 2019 increased thresh') ax.set_title('CY Diatoms (0-100 m) with WY Increased Threshold',fontsize=18) ax.legend(frameon=False,loc=1) ax.set_ylim(0,50) ax.set_ylabel('mmol N m$^{-2}$') # In[ ]: