#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import matplotlib.pyplot as plt import netCDF4 as nc import cmocean import datetime as dt from salishsea_tools import evaltools as et, viz_tools,visualisations get_ipython().run_line_magic('matplotlib', 'inline') # In[10]: fHC=nc.Dataset('/data/eolson/MEOPAR/SS36runs/linkHC201812/19jul17/SalishSea_1h_20170719_20170719_ptrc_T.nc') fnew=nc.Dataset('/data/eolson/MEOPAR/SS36runs/CedarRuns/PAR_13bfastSiLR/SalishSea_1h_20170531_20170719_ptrc_T_20170710-20170719.nc') mesh=nc.Dataset('/ocean/eolson/MEOPAR/NEMO-forcing/grid/mesh_mask201702_noLPE.nc') # In[4]: start_date = dt.datetime(2017,1,1) end_date = dt.datetime(2015,7,30) flen=10 namfmt='long' #varmap={'N':'nitrate','Si':'silicon','Ammonium':'ammonium'} filemap={'nitrate':'ptrc_T','silicon':'ptrc_T','ammonium':'ptrc_T','diatoms':'ptrc_T','ciliates':'ptrc_T','flagellates':'ptrc_T'} #gridmap={'nitrate':'tmask','silicon':'tmask','ammonium':'tmask'} fdict={'ptrc_T':1,'grid_T':1} df1=et.loadDFO() df1.head() # In[5]: df2=df1.loc[df1.Year==2017] df3=df2.loc[df2.Si>62] df4=df2.loc[df2.Si<=62] # In[6]: cm1=cmocean.cm.matter cm2=cmocean.cm.balance cm1.set_bad('gray') cm2.set_bad('gray') # In[7]: fHC.variables['deptht_bounds'][0,:] # In[8]: plt.pcolormesh(mesh['nav_lon'],mesh['nav_lat'],np.ma.masked_where(mesh['tmask'][0,0,:,:]==0,fHC.variables['silicon'][-1,0,:,:]),vmin=40,vmax=70,cmap=cm1) plt.plot(mesh['nav_lon'][635,126],mesh['nav_lat'][635,126],'k.') plt.xlim(-125.2,-124.6) plt.ylim(49.2,49.8) print(635,126,mesh['nav_lon'][635,126],mesh['nav_lat'][635,126]) # In[11]: for k in (30,32,35,37): dfi=df3.loc[(df3.Z>fHC['deptht_bounds'][k,0])&(df3.ZfHC['deptht_bounds'][k,0])&(df4.Z