#!/usr/bin/env python # coding: utf-8 # In[1]: import netCDF4 as nc import datetime as dt import subprocess import requests import matplotlib.pyplot as plt import cmocean import numpy as np import os import glob import dateutil as dutil from salishsea_tools import viz_tools import pickle get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: recalc=True #False # In[3]: t0=dt.datetime(2013,1,1) # if recalc: with nc.Dataset('/ocean/eolson/MEOPAR/NEMO-forcing/grid/mesh_mask201702_noLPE.nc') as fm: tmask=np.copy(fm.variables['tmask']) umask=np.copy(fm.variables['umask']) vmask=np.copy(fm.variables['vmask']) navlon=np.copy(fm.variables['nav_lon']) navlat=np.copy(fm.variables['nav_lat']) e3t_0=np.copy(fm.variables['e3t_0']) e3u_0=np.copy(fm.variables['e3u_0']) e3v_0=np.copy(fm.variables['e3v_0']) e1t=np.copy(fm.variables['e1t']) e2t=np.copy(fm.variables['e2t']) e1v=np.copy(fm.variables['e1v']) e2u=np.copy(fm.variables['e2u']) A=fm.variables['e1t'][0,:,:]*fm.variables['e2t'][0,:,:]*tmask[0,0,:,:] #te=dt.datetime(2016,12,1)# last start date of runfnum=18 stm=np.shape(tmask) SiN=1.2 nlen=210 #nlen=58#100 dlist=[t0+dt.timedelta(days=ii*10) for ii in range(0,nlen)] #sdir0='/results/SalishSea/nowcast-green/' sdir1='/results/SalishSea/hindcast.201905/' #sdir3='/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_HCMZ/' tmaskC=np.copy(tmask) tmaskC[:,:,370:490,:12]=0 tmaskC[:,:,887:,30:70]=0 # In[4]: if recalc: tlist=dlist SiGlobalTot=dict() SiTot=dict() BSiTot=dict() DiatTot=dict() changeSiGlobalTot=dict() for idir in (sdir1,): fformat1='%d%b%y/' if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'): fformatT='SalishSea_1d_*_ptrc_T_%Y%m%d-*.nc' fformatP='SalishSea_1d_*_ptrc_T_%Y%m%d-*.nc' elif idir==sdir1: fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc' fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_carp_T.nc' sumSi=np.zeros((len(tlist),stm[2],stm[3])) sumBSi=np.zeros((len(tlist),stm[2],stm[3])) sumDiat=np.zeros((len(tlist),stm[2],stm[3])) ind=-1 for idt0 in tlist: ind=ind+1 cdir=idt0.strftime(fformat1).lower() iffT=idt0.strftime(fformatT) iffP=idt0.strftime(fformatP) if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'): sffT=idir+iffT sffP=idir+iffP elif idir.startswith('/results/') or idir.startswith('/results2/') or ('link' in idir): sffT=idir+cdir+iffT sffP=idir+cdir+iffP print(sffT) f=nc.Dataset(glob.glob(sffT)[0]) fP=nc.Dataset(glob.glob(sffP)[0]) #if idir==sdir0: # e3t=np.expand_dims((1+fP.variables['sossheig'][0,:,:]/np.sum(e3t_0*tmask,1)),0)*e3t_0 if idir==sdir1: e3t=fP.variables['e3t'][:2,:,:,:] Vol=A*e3t sumSi[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['silicon'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol sumBSi[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['biogenic_silicon'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol sumDiat[ind,:,:]=SiN*1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['diatoms'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol f.close() fP.close() SiGlobalTot[idir]=np.sum(np.sum(sumSi+sumBSi+sumDiat,2),1) SiTot[idir]=np.sum(np.sum(sumSi,2),1) BSiTot[idir]=np.sum(np.sum(sumBSi,2),1) DiatTot[idir]=np.sum(np.sum(sumDiat,2),1) changeSiGlobalTot[idir]=[SiGlobalTot[idir][ii+1]-SiGlobalTot[idir][ii] for ii in range(0,len(tlist)-1)] # In[5]: klim=20 if recalc: tlist=dlist BSiTotS=dict() DiatTotS=dict() for idir in (sdir1,): fformat1='%d%b%y/' if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'): fformatT='SalishSea_1d_*_ptrc_T_%Y%m%d-*.nc' fformatP='SalishSea_1d_*_ptrc_T_%Y%m%d-*.nc' elif idir==idir.startswith('/results/') or idir.startswith('/results2/') or ('link' in idir): fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc' fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_carp_T.nc' sumBSiS=np.zeros((len(tlist),stm[2],stm[3])) sumDiatS=np.zeros((len(tlist),stm[2],stm[3])) ind=-1 for idt0 in tlist: ind=ind+1 cdir=idt0.strftime(fformat1).lower() iffT=idt0.strftime(fformatT) iffP=idt0.strftime(fformatP) if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'): sffT=idir+iffT sffP=idir+iffP elif idir.startswith('/results/') or idir.startswith('/results2/') or ('link' in idir): sffT=idir+cdir+iffT sffP=idir+cdir+iffP print(sffT) f=nc.Dataset(glob.glob(sffT)[0]) fP=nc.Dataset(glob.glob(sffP)[0]) #if idir==sdir0: # e3t=np.expand_dims((1+fP.variables['sossheig'][0,:,:]/np.sum(e3t_0*tmask,1)),0)*e3t_0 if idir==sdir1: e3t=fP.variables['e3t'][:2,:,:,:] Vol=A*e3t sumBSiS[ind,:,:]=1e-3*np.sum(tmaskC[0,:klim,:,:]*Vol[0,:klim,:,:]*f.variables['biogenic_silicon'][0,:klim,:,:],0) #mmol/m3*m3*10^-3=mol sumDiatS[ind,:,:]=SiN*1e-3*np.sum(tmaskC[0,:klim,:,:]*Vol[0,:klim,:,:]*f.variables['diatoms'][0,:klim,:,:],0) #mmol/m3*m3*10^-3=mol f.close() fP.close() BSiTotS[idir]=np.sum(np.sum(sumBSiS,2),1) DiatTotS[idir]=np.sum(np.sum(sumDiatS,2),1) # In[6]: #test=np.sum(np.sum((sumSi[-1,:,:]+np.sum(1e-3*7*tmaskC[0,:,:,:]*Vol[0,:,:,:],0))+sumBSi[-1,:,:]+sumDiat[-1,:,:],1),0) #test2=np.sum(np.sum(sumSi[-1,:,:]+sumBSi[-1,:,:]+sumDiat[-1,:,:],1),0) # In[7]: if recalc: fig,ax=plt.subplots(1,1,figsize=(6,5)) ax.plot(SiGlobalTot[sdir1]-SiGlobalTot[sdir1][0],'b-') ax.set_xlabel('10-day intervals since '+t0.strftime('%b $d $Y')) ax.set_ylabel('Difference in Total Si') # In[8]: if recalc: ## plots related to sinking fig,ax=plt.subplots(1,1,figsize=(18,5)) ax.plot(BSiTot[sdir1],'r-',label='bSi') ax.plot(DiatTot[sdir1],'b-',label='diatoms') ax.set_xlabel('10-day intervals since '+t0.strftime('%b $d $Y')) ax.legend() # In[9]: if recalc: ## plots related to sinking fig,ax=plt.subplots(1,1,figsize=(18,5)) ax.plot(BSiTotS[sdir1],'r-',label='bSi') ax.plot(DiatTotS[sdir1],'b-',label='diatoms') ax.set_xlabel('10-day intervals since '+t0.strftime('%b $d $Y')) ax.legend() # In[10]: if recalc: fig,ax=plt.subplots(1,1,figsize=(18,5)) ax.plot((BSiTot[sdir1]-np.mean(BSiTot[sdir1]))/np.std(BSiTot[sdir1]),'r-',label='bSi all') ax.plot((BSiTotS[sdir1]-np.mean(BSiTotS[sdir1]))/np.std(BSiTotS[sdir1]),'r--',label='bSi surf') ax.plot((BSiTot[sdir1])/np.std(BSiTot[sdir1]),'r:',label='bSi norm') ax.plot(np.tanh(.5*(BSiTot[sdir1])/np.std(BSiTot[sdir1])),'b-',label='limiter') ax.plot(np.tanh(.5*(BSiTot[sdir1])/1000000000),'g-',label='limiter2') ax.plot(np.tanh(.5*(BSiTotS[sdir1])/200000000),'c-',label='limiter2') ax.set_xlabel('10-day intervals since '+t0.strftime('%b $d $Y')) ax.legend() print('std err total bsi is:',np.std(BSiTot[sdir1])) print(' std err 20m bsi is:',np.std(BSiTotS[sdir1])) # In[11]: # for bSi sinking rate, use: # wmin+tanh(.5*bSi_20_sum/200000000)*(wmax-wmin) # need to use cvol = e3t* e1t* e2t, so update code above... # In[12]: # copy restart and add 7 to Si old and new # ## repeat for N # In[13]: if recalc: tlist=dlist NGlobalTot=dict() VolTot=dict() NO3Tot=dict() NH4Tot=dict() PONTot=dict() DONTot=dict() DiatTot=dict() MyriTot=dict() NanoTot=dict() MiZoTot=dict() changeNGlobalTot=dict() for idir in (sdir1,): fformat1='%d%b%y/' if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'): fformatT='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc' fformatP='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc' elif idir.startswith('/results/') or idir.startswith('/results2/') or ('link' in idir): fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc' fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_carp_T.nc' sumNO3=np.zeros((len(tlist),stm[2],stm[3])) sumVol=np.zeros((len(tlist),stm[2],stm[3])) sumNH4=np.zeros((len(tlist),stm[2],stm[3])) sumPON=np.zeros((len(tlist),stm[2],stm[3])) sumDON=np.zeros((len(tlist),stm[2],stm[3])) sumDiat=np.zeros((len(tlist),stm[2],stm[3])) sumMyri=np.zeros((len(tlist),stm[2],stm[3])) sumNano=np.zeros((len(tlist),stm[2],stm[3])) sumMiZo=np.zeros((len(tlist),stm[2],stm[3])) ind=-1 for idt0 in tlist: ind=ind+1 cdir=idt0.strftime(fformat1).lower() iffT=idt0.strftime(fformatT) iffP=idt0.strftime(fformatP) if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'): sffT=idir+iffT sffP=idir+iffP elif idir.startswith('/results/') or idir.startswith('/results2/') or ('link' in idir): sffT=idir+cdir+iffT sffP=idir+cdir+iffP print(sffT) f=nc.Dataset(glob.glob(sffT)[0]) fP=nc.Dataset(glob.glob(sffP)[0]) #if idir==sdir0: # e3t=np.expand_dims((1+fP.variables['sossheig'][0,:,:]/np.sum(e3t_0*tmask,1)),0)*e3t_0 if idir==sdir1: e3t=fP.variables['e3t'][:2,:,:,:] Vol=A*e3t sumVol[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:],0) #mmol/m3*m3*10^-3=mol sumNO3[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['nitrate'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol sumNH4[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['ammonium'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol sumPON[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['particulate_organic_nitrogen'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol sumDON[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['dissolved_organic_nitrogen'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol sumDiat[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['diatoms'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol sumMyri[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['ciliates'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol sumMiZo[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['microzooplankton'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol f.close() fP.close() NGlobalTot[idir]=np.sum(np.sum(sumNO3+sumNH4+sumPON+sumDON+sumDiat+sumMyri+sumNano+sumMiZo,2),1) VolTot[idir]=np.sum(np.sum(sumVol,2),1) NO3Tot[idir]=np.sum(np.sum(sumNO3,2),1) NH4Tot[idir]=np.sum(np.sum(sumNH4,2),1) PONTot[idir]=np.sum(np.sum(sumPON,2),1) DONTot[idir]=np.sum(np.sum(sumDON,2),1) DiatTot[idir]=np.sum(np.sum(sumDiat,2),1) MyriTot[idir]=np.sum(np.sum(sumMyri,2),1) NanoTot[idir]=np.sum(np.sum(sumNano,2),1) MiZoTot[idir]=np.sum(np.sum(sumMiZo,2),1) changeNGlobalTot[idir]=[NGlobalTot[idir][ii+1]-NGlobalTot[idir][ii] for ii in range(0,len(tlist)-1)] # In[14]: if recalc: #plt.plot(SiGlobalTot[sdir0]-SiGlobalTot[sdir0][0],'r-') #plt.plot(SiGlobalTot[sdir3]-SiGlobalTot[sdir3][0],'g-') #plt.plot(40,test-SiGlobalTot[sdir1][0],'r*') #plt.plot(40,test2-SiGlobalTot[sdir1][0],'k*') fig,ax=plt.subplots(1,1,figsize=(6,5)) ax.plot(NGlobalTot[sdir1]-NGlobalTot[sdir1][0],'r-') ax.set_xlabel('10-day intervals since '+t0.strftime('%b $d $Y')) ax.set_ylabel('Difference in Total N') # In[15]: if recalc: plt.plot(SiGlobalTot[sdir1]-SiGlobalTot[sdir1][0],'b-') plt.plot(NGlobalTot[sdir1]-NGlobalTot[sdir1][0],'r-') # In[16]: if recalc: pickle.dump(SiGlobalTot[sdir1],open('SiGlobalTot_HC1905.pkl','wb')) pickle.dump(NGlobalTot[sdir1],open('NGlobalTot_HC1905.pkl','wb')) # In[17]: SiGlobalTotHC=pickle.load(open('SiGlobalTot_HC1905.pkl','rb')) NGlobalTotHC=pickle.load(open('NGlobalTot_HC1905.pkl','rb')) # In[18]: SiGlobalTotHC18=pickle.load(open('SiGlobalTot_HCDec.pkl','rb')) NGlobalTotHC18=pickle.load(open('NGlobalTot_HCDec.pkl','rb')) # In[19]: SiGlobalTotHC1=pickle.load(open('SiGlobalTot_HC19spin1.pkl','rb')) NGlobalTotHC1=pickle.load(open('NGlobalTot_HC19spin1.pkl','rb')) # In[20]: #SiGlobalTotT3=pickle.load(open('SiGlobalTotT3.pkl','rb')) #NGlobalTotT3=pickle.load(open('NGlobalTotT3.pkl','rb')) # In[21]: #SiGlobalTotZ1=pickle.load(open('SiGlobalTotZ1.pkl','rb')) #NGlobalTotZ1=pickle.load(open('NGlobalTotZ1.pkl','rb')) # In[22]: #tit='spring2015_Z3' #SiGlobalTotZ3=pickle.load(open('SiGlobalTot_'+tit+'.pkl','rb')) #NGlobalTotZ3=pickle.load(open('NGlobalTot_'+tit+'.pkl','rb')) # In[23]: bdir='/data/eolson/MEOPAR/SS36runs/CedarRuns/' tit='spring15spun_Ztest' SiGlobalTotZtest=pickle.load(open(bdir+tit+'/SiGlobalTot_'+tit+'.pkl','rb')) NGlobalTotZtest=pickle.load(open(bdir+tit+'/NGlobalTot_'+tit+'.pkl','rb'))tit='spring15spun_Z4' SiGlobalTotZ4=pickle.load(open(bdir+tit+'/SiGlobalTot_'+tit+'.pkl','rb')) NGlobalTotZ4=pickle.load(open(bdir+tit+'/NGlobalTot_'+tit+'.pkl','rb'))tit='spring15spun_Z5' SiGlobalTotZ5=pickle.load(open(bdir+tit+'/SiGlobalTot_'+tit+'.pkl','rb')) NGlobalTotZ5=pickle.load(open(bdir+tit+'/NGlobalTot_'+tit+'.pkl','rb'))tit='spring16spun_Z6' SiGlobalTotZ6=pickle.load(open(bdir+tit+'/SiGlobalTot_'+tit+'.pkl','rb')) NGlobalTotZ6=pickle.load(open(bdir+tit+'/NGlobalTot_'+tit+'.pkl','rb'))tit='spring16spun_Z7' SiGlobalTotZ7=pickle.load(open(bdir+tit+'/SiGlobalTot_'+tit+'.pkl','rb')) NGlobalTotZ7=pickle.load(open(bdir+tit+'/NGlobalTot_'+tit+'.pkl','rb')) # In[24]: fig,ax=plt.subplots(1,1,figsize=(16,8)) plt.plot([t0+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotHC))],SiGlobalTotHC,'y-') plt.plot([t0+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotHC))],NGlobalTotHC,'m-') plt.plot([dt.datetime(2015,1,1)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotHC18))],SiGlobalTotHC18,'g--') plt.plot([dt.datetime(2015,1,1)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotHC18))],NGlobalTotHC18,'r--') plt.plot([dt.datetime(2013,1,1)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotHC1))],SiGlobalTotHC1,'c--') plt.plot([dt.datetime(2013,1,1)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotHC1))],NGlobalTotHC1,'--',color='purple') #plt.plot([dt.datetime(2015,1,11)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotZ4))],SiGlobalTotZ4,'c--') #plt.plot([dt.datetime(2015,1,11)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotZ4))],NGlobalTotZ4,'c--') #ax.plot([dt.datetime(2015,1,11)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotZ5))],SiGlobalTotZ5,'m:') #ax.plot([dt.datetime(2015,1,11)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotZ5))],NGlobalTotZ5,'m:') #ax.plot([dt.datetime(2015,1,11)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotZtest))],SiGlobalTotZtest,'b:') #ax.plot([dt.datetime(2015,1,11)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotZtest))],NGlobalTotZtest,'b:') #ax.plot([dt.datetime(2016,1,6)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotZ6))],SiGlobalTotZ6,'r:') #ax.plot([dt.datetime(2016,1,6)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotZ6))],NGlobalTotZ6,'r:') #ax.plot([dt.datetime(2016,1,6)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotZ7))],SiGlobalTotZ7,'g:') #ax.plot([dt.datetime(2016,1,6)+dt.timedelta(10*ii) for ii in range(0,len(SiGlobalTotZ7))],NGlobalTotZ7,'g:') # In[ ]: # In[ ]: # In[ ]: