#!/usr/bin/env python # coding: utf-8 # This is a notebook for developing energy flux calculations. # Energy fluxes in JDF # In[1]: import matplotlib.pylab as plt import numpy as np import scipy.io as sio import netCDF4 as nc from salishsea_tools import viz_tools from nowcast import research_VENUS import energy_flux as ef import os get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: SITES=research_VENUS.SITES['VENUS'] names=['Central','East'] # In[3]: path = '/ocean/nsoontie/MEOPAR/TidalEllipseData/' data = sio.loadmat(os.path.join(path, 'JuandeFuca_region_20141126_20150426_ssh')) sshstruc = data['sshstruc'] data = sio.loadmat(os.path.join(path, 'JuandeFuca_region_baroclinic_20141126_20150426_masked')) bcstruc = data['datastruc'] data = sio.loadmat(os.path.join(path, 'JuandeFuca_region_20141126_20150426_pbc_t')) pbc_t_struc = data['pbc_t_struc'] data = sio.loadmat(os.path.join(path, 'JuandeFuca_region_depav_20141126_20150426_masked')) btstruc = data['datastruc'] # In[4]: grid=nc.Dataset('/data/nsoontie/MEOPAR/NEMO-forcing/grid/bathy_meter_SalishSea2.nc') NEMO_lons = grid.variables['nav_lon'][:] NEMO_lats = grid.variables['nav_lat'][:] bathy=grid.variables['Bathymetry'][:] mesh = nc.Dataset('/data/nsoontie/MEOPAR/NEMO-forcing/grid/mesh_mask_SalishSea2.nc') tmask = mesh.variables['tmask'][0,:,:,:] e3t = mesh.variables['e3t'][0,:,:,:] # # Barotropic - M2 # In[5]: const='M2' lons = sshstruc['lons'][0,0] lats = sshstruc['lats'][0,0] Fxbt,Fybt = ef.barotropic_flux(sshstruc, btstruc, const) mag = np.sqrt(Fxbt**2+Fybt**2) fig,ax=plt.subplots(1,1,figsize=(15,10)) st=4 q=ax.quiver(lons[::st,::st],lats[::st,::st], Fxbt[::st,::st],Fybt[::st,::st,], mag[::st,::st],cmap='Reds',clim=[0,4000],scale=6*10**4) ax.set_xlim([-124,-122.5]) ax.set_ylim([48,49]) ax.set_title('Barotropic Energy Flux') ax.quiverkey(q,-122.6,48.8,1000,'1000 W/m^2',color='k', coordinates='data') cbar=plt.colorbar(q,ax=ax) cbar.set_label('Energy Flux (W/m^2)') C=ax.contour(NEMO_lons,NEMO_lats,bathy.data,[0,100,125,200], cmap='gray',vmin=0,vmax=400) manuel_locations=[(-123.2,49.15),(-123.2,49),(-123.2,48.95),(-123.35,49.15)] plt.clabel(C,fmt='%1.1f',ax=ax,manual=manuel_locations) for name in names: ax.plot(SITES[name]['lon'],SITES[name]['lat'],'bo') # Depth-integrated will be more useful... More on this later. # # Baroclinic - M2 # Near surface # In[6]: depths = pbc_t_struc['deptht'][0,0][:,0] st=1 d=4 Fxbc,Fybc = ef.baroclinic_flux(pbc_t_struc, bcstruc,const) fig,ax=plt.subplots(1,1,figsize=(15,10)) mag = np.sqrt(Fxbc[:,:,d]**2+Fybc[:,:,d]**2) q = ax.quiver(lons[::st,::st],lats[::st,::st], Fxbc[::st,::st,d],Fybc[::st,::st,d], mag[::st,::st],cmap='Reds',clim=[0,0.5],scale=10) ax.set_title('Baroclinic Energy Flux at Depth {0:.3g} m'.format(depths[d])) ax.quiverkey(q,-122.6,48.8,1,'1 W/m^2',color='k', coordinates='data') cbar=plt.colorbar(q,ax=ax) cbar.set_label('Energy Flux (W/m^2)') C=ax.contour(NEMO_lons,NEMO_lats,bathy.data,[0,100,125,200], cmap='gray',vmin=0,vmax=400) ax.set_xlim([-124,-122.5]) ax.set_ylim([48,49]) plt.clabel(C,fmt='%1.1f',ax=ax,manual=manuel_locations) for name in names: ax.plot(SITES[name]['lon'],SITES[name]['lat'],'bo') # 100 m # In[7]: d=26 st=1 fig,ax=plt.subplots(1,1,figsize=(15,10)) mag = np.sqrt(Fxbc[::st,::st,d]**2+Fybc[::st,::st,d]**2) q = ax.quiver(lons[::st,::st],lats[::st,::st],Fxbc[::st,::st,d],Fybc[::st,::st,d],mag,cmap='Reds',clim=[0,20], scale=5*10**2) ax.set_title('Baroclinic Energy Flux at Depth {0:.3g} m'.format(depths[d])) ax.quiverkey(q,-122.6,48.8,10,'10 W/m^2',color='k', coordinates='data') cbar=plt.colorbar(q,ax=ax) cbar.set_label('Energy Flux (W/m^2)') C=ax.contour(NEMO_lons,NEMO_lats,bathy.data,[0,100,125,200], cmap='gray',vmin=0,vmax=400) ax.set_xlim([-124,-123.2]) ax.set_ylim([48.1,48.5]) plt.clabel(C,fmt='%1.1f',ax=ax,manual=manuel_locations) # # Depth Integrated # Barotropic # In[8]: column_depth = ef.water_depth(tmask,e3t) jstart,istart = ef.find_starting_index(NEMO_lons,NEMO_lats,lons[0,0],lats[0,0]) jend = jstart + Fxbt.shape[-1] iend = istart + Fxbt.shape[0] Fxbt_depint = Fxbt*column_depth[jstart:jend, istart:iend].T Fybt_depint = Fybt*column_depth[jstart:jend, istart:iend].T # Baroclinic # In[9]: Fxbc_depint = ef.depth_integrate(Fxbc, np.transpose(tmask[:,jstart:jend,istart:iend], (2,1,0)), np.transpose(e3t[:,jstart:jend,istart:iend],(2,1,0))) Fybc_depint = ef.depth_integrate(Fybc, np.transpose(tmask[:,jstart:jend,istart:iend], (2,1,0)), np.transpose(e3t[:,jstart:jend,istart:iend],(2,1,0))) # In[10]: fig,axs=plt.subplots(1,2,figsize=(20,7)) st=5 #barotropic ax=axs[0] bt_mag = np.sqrt(Fxbt_depint**2 + Fybt_depint**2) q=ax.quiver(lons[::st,::st],lats[::st,::st], Fxbt_depint[::st,::st],Fybt_depint[::st,::st],bt_mag[::st,::st], cmap='Reds',scale=2*10**6) cbar=plt.colorbar(q,ax=ax) cbar.set_label('Depth-Integrated Energy Flux (W/m)') ax.set_title('Depth-Integrated Barotropic energy flux') ax.quiverkey(q,-123.6,48.35,100000,'100000 W/m',color='k', coordinates='data') #baroclinic st=2 ax=axs[1] bc_mag = np.sqrt(Fxbc_depint**2 + Fybc_depint**2) q=ax.quiver(lons[::st,::st],lats[::st,::st], Fxbc_depint[::st,::st],Fybc_depint[::st,::st],bc_mag[::st,::st], cmap='Reds',clim=[0,500],scale=5*10**3) cbar=plt.colorbar(q,ax=ax) cbar.set_label('Depth-Integrated Energy Flux (W/m)') ax.set_title('Depth-Integrated Baroclinic energy flux') ax.quiverkey(q,-123.6,48.35,300,'300 W/m',color='k', coordinates='data') for ax in axs: C=ax.contour(NEMO_lons,NEMO_lats,bathy.data,[0,100,125,150, 175], cmap='gray',vmin=0,vmax=400) ax.set_xlim([-124,-123.2]) ax.set_ylim([48.1,48.4]) plt.clabel(C,fmt='%1.1f',ax=ax,manual=manuel_locations) for name in names: ax.plot(SITES[name]['lon'],SITES[name]['lat'],'bo') # How can I check if my calculations make sense? # * Foreman 1995 did similar barotropic calculations through Haro Strait. Perhaps I can repeat mine there.... # * Can I do this without the harmonic analysis? # In[ ]: # In[ ]: