#!/usr/bin/env python # coding: utf-8 # # Series of Plots to Analyze Long Ariane Timeseries: Backward South # In[1]: import arrow import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.cm as cmx import matplotlib.colorbar as mcb from matplotlib.patches import Ellipse from matplotlib import gridspec import netCDF4 as nc import numpy as np import os import pandas as pd from salishsea_tools import viz_tools get_ipython().run_line_magic('matplotlib', 'inline') SUBDIR_TMPL = '{:%d%b%y}' results_dir = '/ocean/sallen/allen/research/MEOPAR/Ariane/BackFluxesSouth/StatsFiles/' other_nan = ['********************'] # In[2]: startdate = [] runlength = [] startdate.append('2014-11-11') runlength.append(20+31+365+31+29+28) #startdate.append('2015-09-01') #runlength.append(3) #startdate.append('2016-01-01') #runlength.append(31+29+3) NUM = 5+30+31+365+31+29+13 print (runlength, NUM) # ## Read the Results # In[3]: rawstats = ['sn', 's0max', 's0min', 's0x', 's0x2', 's1max', 's1min', 's1x', 's1x2'] stat = {} VictoriaSill = pd.DataFrame(data=None, index=None, columns=['date', 'latitude-mean', 'latitude-std', 'depth-mean', 'depth-stdev', 'salinity-mean', 'salinity-std', 'age-mean', 'age-stdev', 'flux'], dtype=None, copy=False) VictoriaSillIn = pd.DataFrame(data=None, index=None, columns=['date', 'latitude-mean', 'latitude-std', 'depth-mean', 'depth-stdev', 'salinity-mean', 'salinity-std'], dtype=None, copy=False) Lost = pd.DataFrame(data=None, index=None, columns=['date', 'flux'], dtype=None, copy=False) PugetSound= pd.DataFrame(data=None, index=None, columns=['date', 'flux'], dtype=None, copy=False) thedays = [] mean = np.zeros((5)) stdev = np.zeros((4)) # In[4]: line = 0 for segment in range(len(startdate)): startrundate = arrow.get(startdate[segment], 'YYYY-MM-DD') for nday in range(runlength[segment]): rundate = startrundate.replace(days=+nday) for stattype in rawstats: stat[stattype] = pd.read_csv(os.path.join(results_dir, stattype+'.'+SUBDIR_TMPL.format(rundate.datetime).lower()), index_col=0, na_values=other_nan) stat[stattype].index = [x.strip() for x in stat[stattype].index] for i, parameter in enumerate(['depth', 'latitude', 'sal', 'age']): themean = stat['s1x'][parameter]/stat['sn']['sn'] thestdev = np.sqrt(np.abs((stat['s1x2'][parameter] - stat['s1x'][parameter]**2 / stat['sn']['sn']) / (stat['sn']['sn']-1))) mean[i] = themean.VictoriaSill stdev[i] = thestdev.VictoriaSill mean[4] = stat['sn']['flux'].VictoriaSill lost = (stat['sn']['flux'].total - stat['sn']['flux'].meanders - mean[4] - stat['sn']['flux'].PugetSound - stat['sn']['flux'].Porlier - stat['sn']['flux'].Discovery) # print (stat['sn']['flux'].total, stat['sn']['flux'].meanders, mean[4], # stat['sn']['flux'].PugetSound, stat['sn']['flux'].Porlier, stat['sn']['flux'].Discovery) VictoriaSill.loc[line] = [rundate, mean[1], stdev[1], mean[0], stdev[0], mean[2], stdev[2], mean[3], stdev[3], mean[4]] Lost.loc[line] = [rundate, lost] PugetSound.loc[line] = [rundate, stat['sn']['flux'].Discovery] for i, parameter in enumerate(['depth', 'latitude', 'sal']): themean = stat['s0x'][parameter]/stat['sn']['sn'] thestdev = np.sqrt(np.abs((stat['s0x2'][parameter] - stat['s0x'][parameter]**2 / stat['sn']['sn']) / (stat['sn']['sn']-1))) mean[i] = themean.VictoriaSill stdev[i] = thestdev.VictoriaSill VictoriaSillIn.loc[line] = [rundate, mean[1], stdev[1], mean[0], stdev[0], mean[2], stdev[2]] line = line + 1 VictoriaSill = VictoriaSill.set_index('date') VictoriaSillIn = VictoriaSillIn.set_index('date') Lost = Lost.set_index('date') PugetSound = PugetSound.set_index('date') # In[5]: times = np.array([VictoriaSill.index[i].datetime for i in range(NUM)]) dmax=150; dmin=0 vmax=33.2; vmin=28 fig, ax = plt.subplots(3,2, figsize=(15,15)) ax[0,0].plot_date(times, VictoriaSillIn['salinity-mean'],'-o', linewidth=3) ax[0,0].plot_date(times, VictoriaSillIn['salinity-mean']+VictoriaSillIn['salinity-std'],'g-o') ax[0,0].plot_date(times, VictoriaSillIn['salinity-mean']-VictoriaSillIn['salinity-std'],'g-o') ax[0,0].set_title('Salnity In') ax[0,0].set_ylim(vmin, vmax) ax[0,0].set_ylabel('Practical Salinity') ax[0,1].plot_date(times, VictoriaSill['salinity-mean'], '-o', linewidth=3) ax[0,1].plot_date(times, VictoriaSill['salinity-mean']+VictoriaSill['salinity-std'], 'g-o') ax[0,1].plot_date(times, VictoriaSill['salinity-mean']-VictoriaSill['salinity-std'], 'g-o') ax[0,1].set_title('Salinity at Victoria Sill') ax[0,1].set_ylim(vmin, vmax) ax[1,0].plot_date(times, VictoriaSillIn['depth-mean'], '-o', linewidth=3) ax[1,0].plot_date(times, VictoriaSillIn['depth-mean']+VictoriaSillIn['depth-stdev'], 'g-o') ax[1,0].plot_date(times, VictoriaSillIn['depth-mean']-VictoriaSillIn['depth-stdev'], 'g-o') ax[1,0].set_title('Depth In') ax[1,0].set_ylim(dmax, dmin) ax[1,0].set_ylabel('Depth (m)') ax[1,1].plot_date(times, VictoriaSill['depth-mean'],'-o', linewidth=3) ax[1,1].plot_date(times, VictoriaSill['depth-mean']+VictoriaSill['depth-stdev'], 'g-o') ax[1,1].plot_date(times, VictoriaSill['depth-mean']-VictoriaSill['depth-stdev'], 'g-o') ax[1,1].set_title('Depth at Victoria Sill') ax[1,1].set_ylim(dmax, dmin) ax[2,0].plot_date(times, VictoriaSill['flux'],'-o', linewidth=4, label='Victoria Sill') ax[2,0].plot_date(times, Lost['flux'], '-o', label='Lost') ax[2,0].plot_date(times, PugetSound['flux'], '-o', label='Puget Sound') ax[2,0].legend() ax[2,0].set_title('Flux') ax[2,0].set_ylabel('Flux (m$^3$ s$^{-1}$)') ax[2,1].plot_date(times, VictoriaSill['age-mean']*15, '-o', linewidth=3) ax[2,1].plot_date(times, (VictoriaSill['age-mean']+VictoriaSill['age-stdev'])*15, 'g-o') ax[2,1].plot_date(times, (VictoriaSill['age-mean']-VictoriaSill['age-stdev'])*15, 'g-o') ax[2,1].set_title('Days from Boundary Pass') ax[2,1].set_ylabel('Age (days)') fig.autofmt_xdate() # In[6]: bathy = nc.Dataset('/ocean/sallen/allen/research/MEOPAR/NEMO-forcing/grid/bathy_meter_SalishSea2.nc') depths_raw = bathy.variables['Bathymetry'][:] lons = bathy.variables['nav_lon'][:] lats = bathy.variables['nav_lat'][:] depths = depths_raw.filled(fill_value=0) # In[7]: fig, ax = plt.subplots(1, 1, figsize=(10, 8)) aspect = viz_tools.set_aspect(ax, coords='map', lats=lats) cmap = plt.get_cmap('winter_r') cmap.set_bad('burlywood') mesh = ax.pcolormesh(lons[:], lats[:], depths_raw[:], cmap=cmap) cbar = fig.colorbar(mesh) plt.axis((-123.7, -122.5, 48., 49.1)) ax.plot(lons[320-1:348-1,283-1], lats[320-1:348-1,283-1], 'or') ax.plot(lons[312-1,314-1:339-1], lats[312-1,314-1:339-1], 'or', alpha=0.3) ax.plot(lons[429-1:433-1,241-1], lats[429-1:433-1, 241-1], 'or', alpha=0.5) ax.plot(lons[221-1, 206-1: 263-1], lats[221-1, 206-1:263-1], 'or', alpha=0.3) ax.plot(lons[233-1:305-1, 179-1], lats[233-1:305-1, 179-1], 'or') # In[8]: xlims = (48.1, 48.4) depthmax = 250 emin = 0.; emax=8e4 cNorm = colors.Normalize(vmin=vmin, vmax=vmax) eNorm = colors.Normalize(vmin=emin, vmax=emax) cmap = 'viridis_r' scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cmap) eMap = cmx.ScalarMappable(norm=eNorm, cmap=cmap) Z = [[vmin,vmin],[vmax,vmax]] strick = plt.contourf(Z, cmap=cmap) plt.clf() Z = [[emin,emin],[emax,emax]] etrick = plt.contourf(Z, cmap=cmap) plt.clf() fig, ax = plt.subplots(1, 2, figsize=(20,10)) ax[0].fill_between(lats[:,179-1], depthmax, depths[:,179-1], color='burlywood') ax[1].fill_between(lats[:,179-1], depthmax, depths[:,179-1], color='burlywood') ells = [Ellipse(xy=(VictoriaSill['latitude-mean'][i], VictoriaSill['depth-mean'][i]), width=2*VictoriaSill['latitude-std'][i], height=2*VictoriaSill['depth-stdev'][i], alpha=(VictoriaSill['salinity-mean'][i]-vmin)/(vmax-vmin), facecolor=scalarMap.to_rgba(VictoriaSill['salinity-mean'][i]) ) for i in range(NUM)] for e in ells: ax[0].add_artist(e) ells = [Ellipse(xy=(VictoriaSill['latitude-mean'][i], VictoriaSill['depth-mean'][i]), width=2*VictoriaSill['latitude-std'][i], height=2*VictoriaSill['depth-stdev'][i], alpha=(VictoriaSill['flux'][i]-emin)/(emax-emin), facecolor=eMap.to_rgba(VictoriaSill['flux'][i]) ) for i in range(NUM)] for e in ells: ax[1].add_artist(e) ax[0].set_ylim((0, 250)) ax[0].set_xlim(xlims) ax[0].invert_yaxis() fig.colorbar(strick, ax=ax[0], label='Practical Salinity') ax[1].set_ylim((0, 250)) ax[1].set_xlim(xlims) ax[1].invert_yaxis() fig.colorbar(etrick, ax=ax[1], label='Flux (m$^3$ s$^{-1}$)') for ax in [ax[0], ax[1]]: ax.set_ylabel('Depth (m)') ax.set_xlabel('Latitude at Victoria Sill') # In[10]: smax=32.; smin=27.5 cNorm = colors.Normalize(vmin=smin, vmax=smax) cmap = 'viridis_r' scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cmap) Z = [[smin,smin],[smax,smax]] strick = plt.contourf(Z, cmap=cmap) plt.clf() ax=[] fig = plt.figure(figsize=(15, 7.5)) gs = gridspec.GridSpec(1, 2, width_ratios=[1, 0.13/0.3*6.5/5.*0.99]) ax.append(plt.subplot(gs[0])) ax.append(plt.subplot(gs[1])) ax[0].fill_between(lats[:,179-1], depthmax, depths[:,179-1], color='burlywood') ells = Ellipse(xy=(np.mean(VictoriaSill['latitude-mean']), np.mean(VictoriaSill['depth-mean'][i])), width=2*np.mean(VictoriaSill['latitude-std']), height=2*np.mean(VictoriaSill['depth-stdev']), facecolor=scalarMap.to_rgba(np.mean(VictoriaSill['salinity-mean']))) ax[0].add_artist(ells) print (np.mean(VictoriaSill['salinity-mean'])) print (np.mean(VictoriaSill['flux']), np.mean(VictoriaSill['flux'])/3500.) ax[0].set_ylim((0, 250)) xlims = (48.1, 48.4) print (7.3/3.3, 0.3/0.13) ax[0].set_xlim(xlims) ax[0].invert_yaxis() ax[1].fill_between(lats[:,283-1], depthmax, depths[:,283-1], color='burlywood') ells = Ellipse(xy=(np.mean(VictoriaSillIn['latitude-mean']), np.mean(VictoriaSillIn['depth-mean'])), width=2*np.mean(VictoriaSillIn['latitude-std']), height=2*np.mean(VictoriaSillIn['depth-stdev']), facecolor = scalarMap.to_rgba(np.mean(VictoriaSillIn['salinity-mean']))) ax[1].add_artist(ells) print (np.mean(VictoriaSillIn['salinity-mean'])) cbar = fig.colorbar(strick, ax=ax[1], label='Practical Salinity') xlims = (48.65, 48.78) ax[1].set_ylim((0, 250)) ax[1].set_xlim(xlims) ax[1].invert_yaxis() ax[0].tick_params(labelsize=14) ax[1].tick_params(labelsize=14) cbar.ax.tick_params(labelsize=14) ax[0].set_xlabel('Latitude', fontsize=14) ax[1].set_xlabel('Latitude', fontsize=14) ax[1].set_xticks([48.65, 48.7, 48.75]) ax[1].set_xticklabels(['48.65', '48.7', '48.75']) ax[0].set_ylabel('Depth (m)', fontsize=14) ax[0].set_title('Victoria Sill', fontsize=20) ax[1].set_title('Boundary Pass', fontsize=20) print (np.mean(VictoriaSill['age-mean'])*15.) #print (np.mean(Discovery['flux'])/3500.) 9. # In[ ]: fig, ax = plt.subplots(1, 2, figsize=(20,10)) xlims = (48.65, 48.78) depthmax = 250 ax[0].fill_between(lats[:,283-1], depthmax, depths[:,283-1], color='burlywood') ax[1].fill_between(lats[:,283-1], depthmax, depths[:,283-1], color='burlywood') ells = [Ellipse(xy=(VictoriaSillIn['latitude-mean'][i], VictoriaSillIn['depth-mean'][i]), width=2*VictoriaSillIn['latitude-std'][i], height=2*VictoriaSillIn['depth-stdev'][i], alpha=(VictoriaSillIn['salinity-mean'][i]-vmin)/(vmax-vmin), facecolor = scalarMap.to_rgba(VictoriaSillIn['salinity-mean'][i]) ) for i in range(NUM)] for e in ells: ax[0].add_artist(e) ells = [Ellipse(xy=(VictoriaSillIn['latitude-mean'][i], VictoriaSillIn['depth-mean'][i]), width=2*VictoriaSillIn['latitude-std'][i], height=2*VictoriaSillIn['depth-stdev'][i], alpha=(VictoriaSill['flux'][i]-emin)/(emax-emin), facecolor=eMap.to_rgba(VictoriaSill['flux'][i]) ) for i in range(NUM)] for e in ells: ax[1].add_artist(e) ax[0].set_ylim((0, 250)) ax[0].set_xlim(xlims) ax[0].invert_yaxis() fig.colorbar(strick, ax=ax[0], label='Practical Salinity') ax[1].set_ylim((0, 250)) ax[1].set_xlim(xlims) ax[1].invert_yaxis() fig.colorbar(etrick, ax=ax[1], label='Flux (m$^3$ s$^{-1}$)') for ax in [ax[0], ax[1]]: ax.set_ylabel('Depth (m)') ax.set_xlabel('Latitude Across Boundary Pass') # In[ ]: st=6; et=-1 fig, ax = plt.subplots(3, 3, figsize=(15,15)) ax[0,0].plot(VictoriaSill['flux'][st:et], VictoriaSill['depth-mean'][st:et], 'o') ax[0,0].plot(VictoriaSill['flux'][:3], VictoriaSill['depth-mean'][:3], 'g^') ax[0,0].plot(VictoriaSill['flux'][3:6], VictoriaSill['depth-mean'][3:6], 'ro') ax[0,0].invert_yaxis() ax[0,0].set_ylabel('Depth at Victoria Sill (m)') ax[1,0].plot(VictoriaSill['flux'][st:et], VictoriaSill['salinity-mean'][st:et], 'o') ax[1,0].plot(VictoriaSill['flux'][:3], VictoriaSill['salinity-mean'][:3], 'g^') ax[1,0].plot(VictoriaSill['flux'][3:6], VictoriaSill['salinity-mean'][3:6], 'ro') ax[2,0].set_xlabel('Flux (m$^3$ s$^{-1}$)') ax[1,0].set_ylabel('Practical Salinity at Victoria Sill') ax[0,1].plot(VictoriaSill['age-mean'][st:et]*15, VictoriaSill['depth-mean'][st:et], 'o') ax[0,1].plot(VictoriaSill['age-mean'][:3]*15, VictoriaSill['depth-mean'][:3], 'g^') ax[0,1].plot(VictoriaSill['age-mean'][3:6]*15, VictoriaSill['depth-mean'][3:6], 'ro') ax[0,1].invert_yaxis() ax[1,1].plot(VictoriaSill['age-mean'][st:et]*15, VictoriaSill['salinity-mean'][st:et], 'o') ax[1,1].plot(VictoriaSill['age-mean'][:3]*15, VictoriaSill['salinity-mean'][:3], 'g^') ax[1,1].plot(VictoriaSill['age-mean'][3:6]*15, VictoriaSill['salinity-mean'][3:6], 'ro') ax[1,1].set_xlabel('Age (days)') ax[0,2].plot(VictoriaSill['salinity-mean'][st:et], VictoriaSill['depth-mean'][st:et], 'o') ax[0,2].plot(VictoriaSill['salinity-mean'][:3], VictoriaSill['depth-mean'][:3], 'g^') ax[0,2].plot(VictoriaSill['salinity-mean'][3:6], VictoriaSill['depth-mean'][3:6], 'ro') ax[0,2].set_xlabel('Practical Salinity at Victoria Sill') ax[0,2].invert_yaxis() ax[2,0].plot(VictoriaSill['flux'][st:et], VictoriaSill['age-mean'][st:et]*15, 'o') ax[2,0].plot(VictoriaSill['flux'][:3], VictoriaSill['age-mean'][:3]*15, 'g^') ax[2,0].plot(VictoriaSill['flux'][3:6], VictoriaSill['age-mean'][3:6]*15, 'ro') ax[2,0].set_ylabel('Age (days)') ax[1,2].axis('off') ax[2,1].axis('off') ax[2,2].axis('off') # In[ ]: