#!/usr/bin/env python # coding: utf-8 # # Table of Contents #
# # NetHack's functions Rne, Rn2 and Rnz in Python 3 # # I liked [this blog post](https://eev.ee/blog/2018/01/02/random-with-care/#beware-gauss) by [Eevee](https://eev.ee/blog/). # He wrote about interesting things regarding random distributions, and linked to [this page](https://nethackwiki.com/wiki/Rnz) which describes a weird distribution implemented as `Rnz` in the [NetHack](https://www.nethack.org/) game. # # > Note: I never heard of any of those before today. # # I wanted to implement and experiment with the `Rnz` distribution myself. # Its code ([see here](https://nethackwiki.com/wiki/Source:NetHack_3.6.0/src/rnd.c#rnz)) uses two other distributions, `Rne` and `Rn2`. # In[41]: get_ipython().run_line_magic('load_ext', 'watermark') get_ipython().run_line_magic('watermark', '-v -m -p numpy,matplotlib') # In[39]: import random import numpy as np import matplotlib.pyplot as plt # ## `Rn2` distribution # # [The `Rn2` distribution](https://nethackwiki.com/wiki/Rn2) is simply an integer uniform distribution, between $0$ and $x-1$. # In[19]: def rn2(x): return random.randint(0, x-1) # In[20]: np.asarray([rn2(10) for _ in range(100)]) # Testing for `rn2(x) == 0` gives a $1/x$ probability : # In[32]: from collections import Counter # In[35]: Counter([rn2(10) == 0 for _ in range(100)]) # In[36]: Counter([rn2(10) == 0 for _ in range(1000)]) # In[37]: Counter([rn2(10) == 0 for _ in range(10000)]) # ## `Rne` distribution # # [The `Rne` distribution]() is a truncated geometric distribution. # In[88]: def rne(x, truncation=5): truncation = max(truncation, 1) tmp = 1 while tmp < truncation and rn2(x) == 0: tmp += 1 return tmp # > In the NetHack game, the player's experience is used as default value of the `truncation` parameter... # In[89]: np.asarray([rne(3) for _ in range(50)]) # In[90]: plt.hist(np.asarray([rne(3) for _ in range(10000)]), bins=5) # In[91]: np.asarray([rne(4, truncation=10) for _ in range(50)]) # In[92]: plt.hist(np.asarray([rne(4, truncation=10) for _ in range(10000)]), bins=10) # Let's check what [this page](https://nethackwiki.com/wiki/Rnz#Probability_density_function) says about `rne(4)`: # # > The rne(4) call returns an integer from 1 to 5, with the following probabilities: # > # > |Number| Probability | # > |:-----|------------:| # > | 1 | 3/4 | # > | 2 | 3/16 | # > | 3 | 3/64 | # > | 4 | 3/256 | # > | 5 | 1/256 | # In[96]: ref_table = {1: 3/4, 2: 3/16, 3: 3/64, 4: 3/256, 5: 1/256} ref_table # In[99]: N = 100000 table = Counter([rne(4, truncation=5) for _ in range(N)]) for k in table: table[k] /= N table = dict(table) table # In[111]: rel_diff = lambda x, y: abs(x - y) / x for k in ref_table: x, y = ref_table[k], table[k] r = rel_diff(x, y) print(f"For k={k}: relative difference is {r:.3g} between {x:.3g} (expectation) and {y:.3g} (with N={N} samples).") # > Seems true ! # ## `Rnz` distribution # # It's not too hard to write. # In[112]: def rnz(i, truncation=10): x = i tmp = 1000 tmp += rn2(1000) tmp *= rne(4, truncation=truncation) flip = rn2(2) if flip: x *= tmp x /= 1000 else: x *= 1000 x /= tmp return int(x) # ## Examples # In[113]: np.asarray([rnz(3) for _ in range(100)]) # In[114]: np.asarray([rnz(3, truncation=10) for _ in range(100)]) # ### For `x=350` # In[115]: np.asarray([rnz(350) for _ in range(100)]) # In[122]: _ = plt.hist(np.asarray([rnz(350) for _ in range(100000)]), bins=200) # In[78]: np.asarray([rnz(350, truncation=10) for _ in range(100)]) # In[120]: _ = plt.hist(np.asarray([rnz(350, truncation=10) for _ in range(10000)]), bins=200) # ## Conclusion # That's it, not so interesting but I wanted to write this.