import math #initialisation of variables print('At distance equal to x=xi at which N = concentration n of doped silicon wafers , the net impurity density is zero. Thus xi is the distance at which junction is formed') q = 1.6*(10**-19) #Charge of electron yn=1300.0 #mobility of silicon p = 0.5 #resistivity in ohm=cm y=2.2 #Calculations t=2.0*3600 #in sec. xi = 2.7*(10**-4) #Junction Depth in cm. n = 1/(p*yn*q) #Concentration of doped silicon wafer print("The concentration n = %.2f cm^-3 x 10^16" %(n/10**16)) print('The junction is formed when N = n') #y = xi/(2*(D*t)^0.5) D=((xi)**2/((2*y)**2*t)) #Diffusion Constant #Results print("The value of Diffusion Constant for Boron = %.2f cm^2/sec X 10^-13" %(D*10**13)) import math #initialisation of variables d=5.2*10**-13 #from previous example depth=1.7*10**-4 t=2*3600.0 c=2.5*10**17 # boron concentration cm^3 #Calculations y = depth/(2*(math.sqrt(d*t))) q=(c*(math.sqrt(math.pi*4*10**-13*3420)))/(math.exp(-((depth**2)/(4*4*10**-13*3420)))) #Results print("The value of Y is = %.2f " %(y)) print("The value of Q is = %.2f cm2 X 10^15 " %(q/10**15)) import math #initialisation of variables y=100.0*10**-4 #mm h=500.0 #cm^2/V-s p=10.0**16 #boron of concentration #Calculations Rs=1.0/(1.6*10**-19*h*p*y) #Results print("The value of Rs sheet resistance is = %.2f ohm/sqare" %(Rs)) import math #initialisation of variables Rs=100.0 #ohm/square l=50.0 #mm w=10 #mm #Calculations R=Rs*(l/w) #Results print("The resistance of defused resistor is = %.2f ohm" %(R)) import math #initialisation of variables A=100*10**-8 #mm^2 q=1.6*10**-19 Nd=10**16 #donor concentration /cm^3 e=11.9*8.85*10**-14 Vj=0.82 #v #Calculations C=A*math.sqrt((q*Nd*e)/(2*Vj)) #Results print("The capacitance is = %.f fF" %(C*10**15)) import math #initialisation of variables A=100*10*10**-8 #mm^2 q=1.6*10**-19 e=11.9*8.85*10**-14 Vj=0.98 #v Mn=1300.0 pn=0.01 #Calculations Nd=1/(q*Mn*pn) #donor concentration /cm^3 C=A*math.sqrt((q*Nd*e)/(2*Vj)) #Results print("The capacitance is = %.f pF" %(C*10**12)) import math #initialisation of variables e=3.9*8.85*10**-14 d=20*10**-8 #Calculations C=(e/d)*(10**9/10**8) #Results print("The capacitance per unit area is = %.2f fF/mM^2" %(C*10**6))