#!/usr/bin/env python
# coding: utf-8
#
# # **자연어와 Deep Learning**
# ## **LSTM 단어 알파벳 완성모델**
#
#
# ## **1 Data : 학습대상**
# 1. **X (Input Data)** : Sequence Data (전체 4개 알파벳의 연속성을 학습)
# 1. **Y (Output Data)** : Sequence Data (전체 2개 한글의 연속성을 학습)
# 1. **Sequence Data 를 Output** 으로 연결하기 위해 서로 다른 **RNN/ LSTM Cell을 덧붙인다**
# In[ ]:
# 분석할 데이터 (원하는 다른 내용으로 변경가능)
seq_data = [['word', '단어'], ['wood', '나무'], ['game', '놀이'],
['girl', '소녀'], ['kiss', '키스'], ['love', '사랑']]
#
# ## **2 데이터 임배딩 객체/ 함수(Batch 함수) 정의**
# one-hot-encoding 활용
# In[ ]:
# Train 에 사용할 Input / Output 데이터를 숫자로 변환하기 위한 Index 를 특정한다
char_arr = [ c for c in 'SPabcdefghijklmnopqrstuvwxyz나놀녀단랑무사소스어이키E']
num_dic = { n : i for i, n in enumerate(char_arr)}
dic_len = len(num_dic)
print("One-Hot-Encoding 객체의 수 : {}개\nOne-Hot-Encoding 내용 :\n{}".format(
dic_len, num_dic))
# In[ ]:
# Tensorflow 에 입력을 위한 Batch 함수를 정의한다
def make_batch(seq_data):
input_batch, output_batch, target_batch = [], [], []
for seq in seq_data:
input_data = [num_dic[n] for n in seq[0]]
output = [num_dic[n] for n in ('S' + seq[1])]
target = [num_dic[n] for n in (seq[1] + 'E')]
input_batch.append(np.eye(dic_len)[input_data])
output_batch.append(np.eye(dic_len)[output])
target_batch.append(target)
return input_batch, output_batch, target_batch
#
# ## **3 모델의 정의**
# In[ ]:
# 학습에 필요한 모듈을 불러온다
import tensorflow as tf
import numpy as np
# In[ ]:
# 학습에 필요한 Parameter
tf.reset_default_graph()
learning_rate = 0.01
n_hidden, total_epoch = 128, 100
n_class = n_input = dic_len
# Encoder / Decoder / Target 을 각각 정의한다
enc_input = tf.placeholder(tf.float32, [None, None, n_input])
dec_input = tf.placeholder(tf.float32, [None, None, n_input])
targets = tf.placeholder(tf.int64, [None, None]) # [batch size, time steps]
# In[ ]:
# RNN Encoder Cell을 정의한다
with tf.variable_scope('encode'):
enc_cell = tf.nn.rnn_cell.BasicRNNCell(n_hidden)
enc_cell = tf.nn.rnn_cell.DropoutWrapper(enc_cell, output_keep_prob = 0.5)
outputs, enc_states = tf.nn.dynamic_rnn(enc_cell, enc_input,dtype=tf.float32)
# In[ ]:
# RNN Decoder Cell을 정의한다
with tf.variable_scope('decode'):
dec_cell = tf.nn.rnn_cell.BasicRNNCell(n_hidden)
dec_cell = tf.nn.rnn_cell.DropoutWrapper(dec_cell, output_keep_prob=0.5)
outputs, dec_states = tf.nn.dynamic_rnn(dec_cell, dec_input,
initial_state = enc_states,
dtype = tf.float32)
# In[ ]:
# Cell 을 활용한 Model (Graph) 를 정의한다
# Cost 함수, Optimizer 함수를 정의한다
model = tf.layers.dense(outputs, n_class, activation=None)
cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits = model, labels = targets))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
#
# ## **4 모델의 학습**
# 위에서 정의한 Model 에, **make_batch** 로 단어를 숫자로 변환 후 학습한다
# In[ ]:
get_ipython().run_cell_magic('time', '', "sess = tf.Session()\nsess.run(tf.global_variables_initializer())\ninput_batch, output_batch, target_batch = make_batch(seq_data)\nfor epoch in range(total_epoch):\n _, loss = sess.run([optimizer, cost],\n feed_dict={enc_input: input_batch,\n dec_input: output_batch,\n targets: target_batch})\n if epoch % 9 == 0 :\n print('Epoch: {:4d} cost = {:.6f}'.format((epoch + 1),loss))\nprint('최적화 완료!')\n")
#
# ## **5 모델의 검증**
# seq_data 를 활용하여 모델을 검증한다
# In[ ]:
get_ipython().run_cell_magic('time', '', "def translate(word):\n seq_data = [word, 'P' * len(word)]\n input_batch, output_batch, target_batch = make_batch([seq_data])\n prediction = tf.argmax(model, 2) # [None, None, n_input]\n result = sess.run(prediction,\n feed_dict={enc_input: input_batch,\n dec_input: output_batch,\n targets: target_batch})\n decoded = [char_arr[i] for i in result[0]]\n end = decoded.index('E')\n translated = ''.join(decoded[:end])\n return translated\n")
# In[ ]:
print('\n=== 번역 테스트 ===')
print('word ->', translate('word'))
print('wodr ->', translate('wodr'))
print('love ->', translate('love'))
print('loev ->', translate('loev'))
print('abcd ->', translate('abcd'))
sess.close()