#!/usr/bin/env python # coding: utf-8 #

# # **Project4 | word2vec** #

# ## **1 데이터 전처리** # In[1]: # 살인의 추억 텍스트 불러오기 filename = '../data/movie_memories_of_murder_2003.txt' with open(filename, 'r') as f: texts = f.read() texts[:500] # In[2]: from txtutil import txtnoun skips = {'두만':'박두만', '태윤':'서태윤', '용구':'조용구', '귀옥':'권귀옥', '희봉':'구희봉', '동철':'신동철', '광호':'백광호', '병순':'조병순', '해일':'박해일', '광호의':'백광호', '백광호의':'백광호'} get_ipython().run_line_magic('time', "texts = txtnoun(filename, skip=skips, tags=['Noun'])") texts[:500] # In[3]: # 명사 Token 작업된 자료를 ssResport.txt 로 저장 texts_file = '../data/mom_noun_script.txt' with open(texts_file, 'w', encoding='utf-8') as file: file.write(texts) # In[4]: # ! cat ./data/ssResport.txt | head -n 10 #

# ## **2 Word 2 vec 객체 만들기** # gensim # In[5]: # ! pip3 install gensim # In[6]: get_ipython().run_cell_magic('time', '', 'texts_file = \'../data/mom_noun_script.txt\'\n\nfrom gensim.models import word2vec\ndata = word2vec.LineSentence(texts_file)\nmodel = word2vec.Word2Vec(data, size=30, window=2, min_count=10, hs=1,\n workers=4, iter=100, sg=1)\nmodel.save("../data/mom_script.model")\nprint("model saved.")\n') #

# ## **3 저장된 모델 불러오기 및 확인** # gensim # In[7]: get_ipython().run_line_magic('reset', '') # In[8]: get_ipython().run_line_magic('who', '') # In[9]: from gensim.models import word2vec model = word2vec.Word2Vec.load('../data/mom_script.model') len(model.wv.vocab.keys()) # In[10]: list(model.wv.index2word) #

# ## **4 Word2Vec 모델 내용 확인** # gensim # In[11]: model.wv.most_similar(positive=['범인']) # In[12]: model.wv.most_similar(negative=['범인']) # In[13]: model.wv.most_similar(positive=['피해자']) # In[14]: model.wv.most_similar(negative=['피해자']) # In[15]: model.wv.most_similar(positive=['박두만']) # In[16]: model.wv.most_similar(positive=['서태윤']) # In[17]: model.wv.most_similar(positive=['조용구']) # In[18]: model.wv.most_similar(positive=['박두만','서태윤']) # In[19]: model.wv.most_similar(positive=['박두만','서태윤'], negative=['피해자']) # In[20]: model.wv.most_similar(positive=['박두만','서태윤'], negative=['박해일']) # In[21]: model.wv.most_similar(positive=['박두만','서태윤'], negative=['범인']) #

# ## **5 Visulaization** # gensim # In[22]: list(model.wv.vocab.keys())[:10] # In[23]: # model.wv.vocab : { word: object of numeric vector } vocab = list(model.wv.vocab) X = model[vocab] X.shape # In[24]: get_ipython().run_cell_magic('time', '', 'from sklearn.manifold import TSNE\ntsne = TSNE(n_components= 2)\nX_tsne = tsne.fit_transform(X)\n') # In[25]: import pandas as pd df = pd.DataFrame(X_tsne, index = vocab, columns=['x', 'y']) df.head() # In[26]: get_ipython().run_line_magic('matplotlib', 'inline') from matplotlib import rc rc('font', family=['NanumGothic','Malgun Gothic']) import matplotlib.pyplot as plt fig = plt.figure(figsize=(12,12)) ax = fig.add_subplot(1, 1, 1) ax.scatter(df['x'], df['y']) for word, pos in df.iterrows(): ax.annotate(word, pos, fontsize=15) plt.grid(True)