#!/usr/bin/env python # coding: utf-8 # In[1]: import networkx import math import scipy.optimize import numpy from lib.time_graph import * from lib.vis import * from lib.syn import * from lib.experiments import * from IPython.display import Image # # Size Graph # In[4]: algos = [TemporalCuts("FSTC-16", "fast-sparse", eps=1e-5, k=16), TemporalCuts("FSTC-64", "fast-sparse", eps=1e-5, k=64), TemporalCuts("STC", "diff-sparse", eps=1e-5), TemporalCuts("LAP", "laplacian-sparse"), TemporalCuts("UNION", "union-sparse"), TemporalCuts("SINGLE", "indep-sparse")] size = [1000, 1500, 2000, 2500] res = size_experiments(algos, size, True, n=10) # In[4]: res # In[5]: output_file_name = "figs/syn_size_slide.png" plot_size_experiments(res, algos, size, output_file_name, 0, 500, 2000) Image(filename=output_file_name) # In[2]: algos = [TemporalCuts("FSTC-16", "fast-norm", eps=1e-5, k=16), TemporalCuts("FSTC-64", "fast-norm", eps=1e-5, k=64), TemporalCuts("STC", "diff-norm", eps=1e-5), TemporalCuts("LAP", "laplacian-norm"), TemporalCuts("UNION", "union-norm"), TemporalCuts("SINGLE", "indep-norm")] size = [1000, 1500, 2000, 2500] res = size_experiments(algos, size, True, n=10) # In[3]: output_file_name = "figs/syn_norm_size_slide.png" plot_size_experiments(res, algos, size, output_file_name, 0, 500, 2000) Image(filename=output_file_name) # # Density # In[ ]: algos = [TemporalCuts("FSTC-16", "fast-sparse", eps=1e-5, k=16), TemporalCuts("FSTC-64", "fast-sparse", eps=1e-5, k=64), TemporalCuts("STC", "diff-sparse", eps=1e-5), TemporalCuts("LAP", "laplacian-sparse"), TemporalCuts("UNION", "union-sparse"), TemporalCuts("SINGLE", "indep-sparse")] hop = [1, 2, 3, 4] res = hop_experiments(algos, hop, True, 10) # In[ ]: output_file_name = "figs/syn_hop_slide.png" plot_hop_experiments(res, algos, hop, output_file_name, 0, 500, 1000) Image(filename=output_file_name) # In[ ]: algos = [TemporalCuts("FSTC-16", "fast-norm", eps=1e-5, k=16), TemporalCuts("FSTC-64", "fast-norm", eps=1e-5, k=64), TemporalCuts("STC", "diff-norm", eps=1e-5), TemporalCuts("LAP", "laplacian-norm"), TemporalCuts("UNION", "union-norm"), TemporalCuts("SINGLE", "indep-norm")] hop = [1, 2, 3, 4] res = hop_experiments(algos, hop, True, 10) # In[ ]: output_file_name = "figs/syn_norm_hop_slide.png" plot_hop_experiments(res, algos, hop, output_file_name, 0, 500, 2000) Image(filename=output_file_name) # # Snapshots # In[2]: algos = [TemporalCuts("FSTC-10", "fast-sparse", eps=1e-5, k=10), TemporalCuts("FSTC-50", "fast-sparse", eps=1e-5, k=50), TemporalCuts("STC", "diff-sparse", eps=1e-5), TemporalCuts("LAP", "laplacian-sparse"), TemporalCuts("UNION", "union-sparse"), TemporalCuts("SINGLE", "indep-sparse")] n_snaps = [5, 10, 15, 20] res = num_snaps_experiments(algos, n_snaps, True, 10) # In[4]: output_file_name = "figs/syn_num_snaps_slide.png" plot_num_snaps_experiments(res, algos, n_snaps, output_file_name, 0, 500, 2000) Image(filename=output_file_name) # # Rank # In[ ]: output_file_name = "figs/syn_norm_rank_time_slide.png" plot_rank_time_experiments(res, rank, output_file_name) Image(filename=output_file_name) # In[ ]: output_file_name = "figs/syn_norm_rank_time_slide.png" plot_rank_time_experiments(res, rank, output_file_name) Image(filename=output_file_name)