--- sidebar_label: "Training-Pytorch-Model" sidebar_position: 2 --- %%bash git clone https://github.com/pytorch/examples %%bash python ./examples/mnist_rnn/main.py --save-model %%bash mkdir ./data from torchvision import datasets from torchvision.transforms import ToTensor training_data = datasets.MNIST( root="./data", train=True, download=True, transform=ToTensor() ) test_data = datasets.MNIST( root="./data", train=False, download=True, transform=ToTensor() ) !curl -sL https://get.bacalhau.org/install.sh | bash %%bash --out job_id bacalhau docker run \ --gpu 1 \ --timeout 3600 \ --wait-timeout-secs 3600 \ --wait \ --id-only \ pytorch/pytorch \ -w /outputs \ -v QmdeQjz1HQQdT9wT2NHX86Le9X6X6ySGxp8dfRUKPtgziw:/data \ -u https://raw.githubusercontent.com/pytorch/examples/main/mnist_rnn/main.py \ -- python ../inputs/main.py --save-model %env JOB_ID={job_id} %%bash bacalhau list --id-filter ${JOB_ID} %%bash bacalhau describe ${JOB_ID} %%bash rm -rf results && mkdir -p results bacalhau get $JOB_ID --output-dir results %%bash ls results/ %%bash cat results/combined_results/stdout %%bash ls results/combined_results/outputs/