#!/usr/bin/env python # coding: utf-8 Text provided under a Creative Commons Attribution license, CC-BY. All code is made available under the FSF-approved MIT license. (c) Lorena A. Barba, Gilbert F. Forsyth 2015. Thanks to NSF for support via CAREER award #1149784. # [@LorenaABarba](https://twitter.com/LorenaABarba) # 12 steps to Navier-Stokes # ===== # *** # You see where this is going ... we'll do 2D diffusion now and next we will combine steps 6 and 7 to solve Burgers' equation. So make sure your previous steps work well before continuing. # Step 7: 2D Diffusion # ---- # *** # And here is the 2D-diffusion equation: # # $$\frac{\partial u}{\partial t} = \nu \frac{\partial ^2 u}{\partial x^2} + \nu \frac{\partial ^2 u}{\partial y^2}$$ # # You will recall that we came up with a method for discretizing second order derivatives in Step 3, when investigating 1-D diffusion. We are going to use the same scheme here, with our forward difference in time and two second-order derivatives. # $$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \nu \frac{u_{i+1,j}^n - 2 u_{i,j}^n + u_{i-1,j}^n}{\Delta x^2} + \nu \frac{u_{i,j+1}^n-2 u_{i,j}^n + u_{i,j-1}^n}{\Delta y^2}$$ # # Once again, we reorganize the discretized equation and solve for $u_{i,j}^{n+1}$ # $$u_{i,j}^{n+1} = u_{i,j}^n + \frac{\nu \Delta t}{\Delta x^2}(u_{i+1,j}^n - 2 u_{i,j}^n + u_{i-1,j}^n) + \frac{\nu \Delta t}{\Delta y^2}(u_{i,j+1}^n-2 u_{i,j}^n + u_{i,j-1}^n)$$ # In[1]: import numpy from matplotlib import pyplot from mpl_toolkits.mplot3d import Axes3D ##library for 3d projection plots from matplotlib import cm ##cm = "colormap" for changing the 3d plot color palette get_ipython().run_line_magic('matplotlib', 'inline') ###variable declarations nx = 31 ny = 31 nt = 17 nu=.05 dx = 2/(nx-1) dy = 2/(ny-1) sigma = .25 dt = sigma*dx*dy/nu x = numpy.linspace(0,2,nx) y = numpy.linspace(0,2,ny) u = numpy.ones((ny,nx)) ##create a 1xn vector of 1's un = numpy.ones((ny,nx)) ## ###Assign initial conditions u[.5/dy:1/dy+1,.5/dx:1/dx+1]=2 ##set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2 fig = pyplot.figure() ax = fig.gca(projection='3d') X,Y = numpy.meshgrid(x,y) surf = ax.plot_surface(X,Y,u, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.set_xlim(0,2) ax.set_ylim(0,2) ax.set_zlim(1,2.5); # $$u_{i,j}^{n+1} = u_{i,j}^n + \frac{\nu \Delta t}{\Delta x^2}(u_{i+1,j}^n - 2 u_{i,j}^n + u_{i-1,j}^n) + \frac{\nu \Delta t}{\Delta y^2}(u_{i,j+1}^n-2 u_{i,j}^n + u_{i,j-1}^n)$$ # In[2]: ###Run through nt timesteps def diffuse(nt): u[.5/dy:1/dy+1,.5/dx:1/dx+1]=2 for n in range(nt+1): un = u.copy() u[1:-1,1:-1]=un[1:-1,1:-1]+nu*dt/dx**2*(un[1:-1,2:]-2*un[1:-1,1:-1]+un[1:-1,0:-2])+\ nu*dt/dy**2*(un[2:,1:-1]-2*un[1:-1,1:-1]+un[0:-2,1:-1]) u[0,:]=1 u[-1,:]=1 u[:,0]=1 u[:,-1]=1 fig = pyplot.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(X,Y,u[:], rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=True) ax.set_zlim(1,2.5) # In[3]: diffuse(10) # In[4]: diffuse(14) # In[5]: diffuse(50) # ## Learn More # The video lesson that walks you through the details for Steps 5 to 8 is **Video Lesson 6** on You Tube: # In[6]: from IPython.display import YouTubeVideo YouTubeVideo('tUg_dE3NXoY') # In[7]: from IPython.core.display import HTML def css_styling(): styles = open("../styles/custom.css", "r").read() return HTML(styles) css_styling() # > (The cell above executes the style for this notebook.)