#!/usr/bin/env python # coding: utf-8 # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') import numpy as np import matplotlib.pyplot as plt import cv2 as cv # # Part 1 # ## (a) Histogram computation. # In[2]: img0 = cv.imread('../a01images/Lenna.png' ,cv.IMREAD_COLOR) fig, axes= plt.subplots(figsize=(10,8))#, sharex='all', sharey='all', figsize=(13,13)) channels = ['b', 'g', 'r'] # since opencv reads img as BGR channel order for i, channel in enumerate(channels): #histogram = cv.calcHist(images, channels, mask, histSize, ranges) histogram = cv.calcHist([img0], [i], None, [256], [0,256]) plt.plot(histogram, color = channel) plt.xlim([0, 255]) plt.savefig('LaTeX Report/figures/hiscomp.eps') plt.show() plt.imshow(cv.cvtColor(img0, cv.COLOR_BGR2RGB)) cv.imwrite('LaTeX Report/figures/img0.png',img0) # ## (b) Histogram equalization. Show the histogram before and after. # In[3]: equalized_channels = [] for channel in cv.split(img0): equalized_channels.append(cv.equalizeHist(channel)) # source 8-bit single channel image. equalized_img = cv.merge(equalized_channels) fig, axes= plt.subplots(figsize=(10,8)) for i, channel in enumerate(channels): #histogram = cv.calcHist(images, channels, mask, histSize, ranges) histogram = cv.calcHist([equalized_img], [i], None, [256], [0,256]) plt.plot(histogram, color = channel) plt.xlim([0, 255]) plt.savefig('LaTeX Report/figures/hisequ.eps') plt.show() plt.imshow(cv.cvtColor(equalized_img, cv.COLOR_BGR2RGB)) cv.imwrite('LaTeX Report/figures/equalized_img.png',equalized_img) # ## (c) Intensity transformations # In[4]: img = cv.imread('../a01images/Lenna.png', cv.IMREAD_COLOR) a, b = [40,200] tr1 = np.linspace(0,a,100).astype('uint8') tr2 = np.linspace(a+1,b,30).astype('uint8') tr3 = np.linspace(b+1,255,126).astype('uint8') transf = np.concatenate((tr1, tr2), axis = 0) transf = np.concatenate((transf, tr3), axis = 0) fig, ax = plt.subplots() ax.plot(transf) ax.set_xlim(0,255) ax.set_ylim(0,255) ax.set_aspect('equal') #ax.set_title('transformation') plt.savefig('LaTeX Report/figures/transformation.eps') plt.show() fig, ax = plt.subplots(1,2) ax[0].imshow(img[:,:,::-1], cmap ='gray', vmin = 0, vmax = 255) ax[0].set_title('Original') cv.imwrite('LaTeX Report/figures/boriginal.png',img) img2 = cv.LUT(img, transf) ax[1].imshow(img2[:,:,::-1], cmap = 'gray', vmin = 0, vmax = 255) ax[1].set_title('Transformed') cv.imwrite('LaTeX Report/figures/btransformed.png',img2) plt.show() # ## d)Gamma correction. # In[5]: img = cv.imread('../a01images/gamma1.jpg', cv.IMREAD_COLOR) cv.imwrite('LaTeX Report/figures/doriginal.png',img) def gammacorrect(image, gammaval): table = np.array([(i/255.0)**(gamma)*255.0 for i in np.arange(0,256)]).astype('uint8') img_gamma = cv.LUT(image, table) cv.imwrite('LaTeX Report/figures/dgamma' + str(gammaval)[-1] +'.png',img_gamma) gammas = [0.4,0.7,1.3] for gamma in gammas: gammacorrect(img, gamma) # ## (e) Gaussian smoothing. State kernel size and SIGMA # In[6]: img = cv.imread('../a01images/Lenna.png', cv.IMREAD_REDUCED_GRAYSCALE_2) cv.imwrite('LaTeX Report/figures/eoriginal.png',img) def gaussianSmooth(kernelSize, sigma): max_abs = np.floor(kernelSize/2) x_range = np.arange(-max_abs,max_abs +1,1) #(form -5 to +5 range) y_range = np.arange(-max_abs,max_abs +1,1) #(form -5 to +5 range) X,Y = np.meshgrid(x_range, y_range) Z = np.exp((-(X**2 + Y**2))/(2*sigma**2))/(2*np.pi*sigma**2) # Gaussian function kernel = Z smoothed_img = cv.filter2D(img,-1,kernel) cv.imwrite('LaTeX Report/figures/SmoothkernelS'+str(kernelSize)+'.png',smoothed_img) sigma = 1.5 ksizes = [7,13,21] for kernelSize in ksizes: gaussianSmooth(kernelSize, sigma) # ## (f ) Unsharp masking. # In[7]: img = cv.imread('../a01images/moon.jpg', cv.IMREAD_GRAYSCALE) cv.imwrite('LaTeX Report/figures/foriginal.png',img) sigma = 2 kernel = cv.getGaussianKernel(5, sigma) #create the gaussian kernel blurred = cv.sepFilter2D(img, -1, kernel, kernel, anchor=(-1,-1), delta=0, borderType=cv.BORDER_REPLICATE) mask = img.astype('float32') - blurred.astype('float32') k = 1 # when k =1 : unsharp masking, when k>1 : Highboost Filtering #dst= cv.addWeighted(src1, alpha, src2, beta, gamma) sharpened = cv.addWeighted(img.astype('float32') , 1., mask, k, 0) cv.imwrite('LaTeX Report/figures/blurred.png',blurred,) cv.imwrite('LaTeX Report/figures/mask.png',mask+120) cv.imwrite('LaTeX Report/figures/sharpened.png',sharpened) # ## (g) Median filtering. State kernel size. # In[8]: from scipy import stats def noisy(noise_typ,image): """ Parameters ---------- image : ndarray Input image data. Will be converted to float. mode : str One of the following strings, selecting the type of noise to add: 'gauss' Gaussian-distributed additive noise. 'poisson' Poisson-distributed noise generated from the data. 's&p' Replaces random pixels with 0 or 1. 'speckle' Multiplicative noise using out = image + n*image,where n is uniform noise with specified mean & variance. Source: https://stackoverflow.com/a/30609854 """ if noise_typ == "gauss": row,col,ch= image.shape mean = 0 var = 100. sigma = var**0.5 gauss = np.random.normal(mean,sigma,(row,col,ch)) gauss = gauss.reshape(row,col,ch) noisy = image + gauss noisy = np.clip(noisy, 0.0, 255.0) print(stats.describe(noisy.ravel())) return noisy elif noise_typ == "s&p": # row,col,ch = image.shape s_vs_p = 0.5 amount = 0.2 out = np.copy(image) # Salt mode num_salt = np.ceil(amount * image.size * s_vs_p) coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape] out[coords] = 255 # Pepper mode num_pepper = np.ceil(amount* image.size * (1. - s_vs_p)) coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape] out[coords] = 0 return out elif noise_typ == "poisson": vals = len(np.unique(image)) vals = 2 ** np.ceil(np.log2(vals)) noisy = np.random.poisson(image * vals) / float(vals) return noisy elif noise_typ =="speckle": row,col,ch = image.shape gauss = np.random.randn(row,col,ch) gauss = gauss.reshape(row,col,ch) noisy = image + image * gauss noisy = np.clip(noisy, 0.0, 255.0) return noisy # In[9]: img = cv.imread('../a01images/Lenna.png', cv.IMREAD_COLOR) cv.imwrite('LaTeX Report/figures/goriginal.png',img) # noise generated using noisy function avalable at # Source: https://stackoverflow.com/a/30609854 saltpepper = noisy("s&p", img) medianfilterimage3 = cv.medianBlur(saltpepper, 3) medianfilterimage5 = cv.medianBlur(saltpepper, 5) cv.imwrite('LaTeX Report/figures/saltpepper.png',saltpepper) cv.imwrite('LaTeX Report/figures/medianfilterimage3.png',medianfilterimage3) cv.imwrite('LaTeX Report/figures/medianfilterimage5.png',medianfilterimage5) # ## (h) Bilateral filtering. Explain the theory of this as well. # In[10]: img = cv.imread('../a01images/blateral.JPG', cv.IMREAD_REDUCED_GRAYSCALE_2) cv.imwrite('LaTeX Report/figures/horiginal.png',img) # noise generated using noisy function avalable at # Source: https://stackoverflow.com/a/30609854 #dst=cv.GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) gaussianB = cv.GaussianBlur(img, (9,9) ,6,6) #sigma = 6 #dst = cv.bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) bl5 = cv.bilateralFilter(img,9,100,6) bl9 = cv.bilateralFilter(img,13,10,6) cv.imwrite('LaTeX Report/figures/gaussianB.png',gaussianB) cv.imwrite('LaTeX Report/figures/bl5.png',bl5) cv.imwrite('LaTeX Report/figures/bl9.png',bl9) # # Part 2: Count the rice grains in the rice image # In[11]: # reading the image a s an eight bit grayscale image # so the pixel values are in the range 0-255 img = cv.imread("../a01images/rice.png", cv.IMREAD_GRAYSCALE) cv.imwrite('LaTeX Report/figures/part2/2original.png',img) #--------------------binary segmentation------------------ # transform input image into pure black and white form # pure white - rice grains # pure black - background # adaptive thresholding due to non uniform illumination in the image kernelSize, C = 25,-10 img_adapt_thresh = th2 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY,kernelSize, C) cv.imwrite('LaTeX Report/figures/part2/img_adapt_thresh.png',img_adapt_thresh) # Morphological transformation: Erosion # https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html # to eliminate white noise and detach connected objects ksize = 3 kernel = cv.getStructuringElement(cv.MORPH_RECT,(ksize,ksize)) eroded_img = cv.erode(img_adapt_thresh, kernel) cv.imwrite('LaTeX Report/figures/part2/eroded_img.png',eroded_img) #---------------------Connected components Analysis(CCA)---------------------- num_labels, labeledImg = cv.connectedComponents(eroded_img) cv.imwrite('LaTeX Report/figures/part2/labeledImg.png',labeledImg) # Background is considered as another object in CCA. # Therfore it needs to be subtracted to get the grain count num_grains = num_labels -1 print(num_grains) #-------------------Show components using a color Map.------------------------- # find min and max pixel values and their locations the image. (minVal, maxVal, minLoc, maxLoc) = cv.minMaxLoc(labeledImg) # Normalize the image so the min value is 0 and max value is 255. labeledImg = (255/(maxVal-minVal)) * (labeledImg - minVal) # Applying the color map for better visulization imgColorMap = cv.applyColorMap(labeledImg.astype('uint8'), cv.COLORMAP_RAINBOW) # Making the background black imgColorMap[labeledImg==0] = 0 cv.imwrite('LaTeX Report/figures/part2/imgColorMap.png',imgColorMap) # Display colormapped labels plt.imshow(imgColorMap[:,:,::-1]) # # Part 3: A program to zoom images by a given factor in (0,10]. # In[12]: def zoom(image, scaling_factor, method): img = image sf = scaling_factor # Determining dimensions of the zoomed image if len(img.shape) == 2: # for GRAYSCALE images zoomedImgDims = [int(dim*sf) for dim in img.shape] else: # for COLOR images zoomedImgDims = [int(dim*sf) for dim in img.shape] zoomedImgDims[2] = 3 # declaring an empty array to store values zoomedImg = np.zeros(zoomedImgDims, dtype = img.dtype) #====================Nearest Neighbour Mehtod(NNM)========================= if method == 'nn': for row in range(zoomedImg.shape[0]): # Calculating corresponding pixels in original image source_row = round(row/sf) # Overflow handling if source_row > img.shape[0]-1: source_row = img.shape[0]-1 for column in range(zoomedImg.shape[1]): # Calculating corresponding pixels in original image source_column = round(column/sf) # Overflow handling if source_column > img.shape[1]-1: source_column = img.shape[1]-1 # Assigning pixel values if len(img.shape) == 2: zoomedImg[row][column] = img[source_row][source_column] else: for channel in range(3): zoomedImg[row][column][channel] = \ img[source_row][source_column][channel] #======================Bilinear Interpolation Mehtod(BIM)================== if method == 'bi': for row in range(zoomedImg.shape[0]): # Calculating corresponding row in original image row_position = row/sf row_below = int(np.floor(row_position)) row_up = int(np.ceil(row_position)) if row_up > img.shape[0]-1: row_up = img.shape[0]-1 for column in range(zoomedImg.shape[1]): # Calculating corresponding column in original image column_position = column/sf column_previous = int(np.floor(column_position)) column_next = int(np.ceil(column_position)) if column_next > img.shape[1]-1: column_next = img.shape[1]-1 diff1 = row_position - row_below diff2 = column_position - column_previous if len(img.shape) == 2: # for GRAYSCALE images interVal1 = img[row_below][column_previous]*(1-diff1)\ + img[row_up][column_previous]*(diff1) interVal2 = img[row_below][column_next]*(1-diff1)\ + img[row_up][column_next]*(diff1) zoomedImg[row][column] = (interVal1*(1-diff2)\ + interVal2*(diff2)).astype('uint8') else: # for COLOR images for channel in range(3): interVal1 = img[row_below][column_previous][channel]*(1-diff1)\ + img[row_up][column_previous][channel]*(diff1) interVal2 = img[row_below][column_next][channel]*(1-diff1)\ + img[row_up][column_next][channel]*(diff1) zoomedImg[row][column][channel] = (interVal1*(1-diff2)\ + interVal2*(diff2)).astype('uint8') return zoomedImg # In[13]: img = cv.imread("../a01images/im09small.png", cv.IMREAD_COLOR) print("Zooming image nnm...") znn = zoom(img, 4, 'nn') print("Zooming image bim...") zbi = zoom(img, 4, 'bi') imgo = cv.imread("../a01images/im09.png", cv.IMREAD_COLOR) errornn = np.sum((imgo - znn)**2) errorbi = np.sum((imgo - zbi)**2) # In[14]: cv.imwrite('LaTeX Report/figures/part3/znn.png',znn) cv.imwrite('LaTeX Report/figures/part3/zbi.png',zbi) print(errornn-errorbi) # In[ ]: