#!/usr/bin/env python # coding: utf-8 # ## Solow Growth Model: What If _s_ is the Net Rather than the Gross Savings Rate? # # Last edited: 2019-08-17 # # Definition of capital-output ratio: # # >(1) $ κ_t = \frac{K_t}{Y_t} $ # # Factor accumulation: # # >(2) $ \frac{dL_t}{dt} = nL_t $ # # >(3) $ \frac{dE_t}{dt} = gE_t $ # # >(4) $ \frac{dK_t}{dt} = s(Y_t - \delta K_t) $ # # >(5) $ \frac{dK_t}{dt} = s(1 - \delta κ_t)Y_t $ # # Production function: # # >(6) $ Y_t = K_t^α(L_tE_t)^{(1-α)} $ # # >(7) $ Y_t = κ_t^{(α/(1-α))}L_tE_t $ # # >(8) $ κ^* = \frac{s(1 - \delta κ^*)}{n+g} $ # # >(9) $ κ^* + \delta κ^* \frac{s}{n+g} = \frac{s}{n+g} $ # # >(10) $ κ^* \left( \frac{n + g + \delta s}{n+g} \right) = \frac{s}{n+g} $ # # >(11) $ κ^* = \frac{s}{n+g + \delta s} $ # # >(12) $ Y^*_t = \left( \frac{s}{n+g + \delta s} \right)^{(α/(1-α))}L_tE_t $ # # > (13) $ \ln(Y^*_t) = (α/(1-α)) \left( \ln(s) - \ln(n+g+\delta s) \right) + \ln(E_t) + \ln(L_t) $ # # > (13) $ \ln(Y^{*net}_t) = (α/(1-α)) \left( \ln(s) - \ln(n+g+\delta s) \right) + \ln(E_t) + \ln(L_t) + \ln(n+g) - \ln(n+g+\delta s)) $ # # >(14) $ Y^{*net}_t = \left( \frac{n + g}{n+g+\delta s} \right) \left( \frac{s}{n+g + \delta s} \right)^{(α/(1-α))}L_tE_t $ # #   # # ---- #   # # ## Solow Growth Model: What If $ s $ is the Net Rather than the Gross Savings Rate? # # # # ### Catch Our Breath—Further Notes: # #
# # ---- # # * Weblog Support # * nbViewer # #   # # ----