#!/usr/bin/env python # coding: utf-8 # # Lecture 16: Exponential Distribution, Memoryless Property # # # ## Stat 110, Prof. Joe Blitzstein, Harvard University # # ---- # ## Exponential Distribution # # ### Description # # Real-valued distribution describing wait times, survival times. Rate parameter $\lambda \gt 0$. # # Continuous analog of the geometric distribution. # # Unique in that the exponential distribution has the memoryless property. # # # In[1]: import matplotlib import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator) from scipy.stats import expon get_ipython().run_line_magic('matplotlib', 'inline') plt.xkcd() _, ax = plt.subplots(figsize=(12,8)) # seme Exponential parameters lambdas = [2.0, 1.5, 1.0, 0.5] # qualitative color scheme colors = ['#66c2a5', '#fc8d62', '#8da0cb', '#e78ac3'] x = np.linspace(0, 4, 500) for i,l in enumerate(lambdas): pdf = expon.pdf(x, scale=1/l) ax.plot(x, pdf, color=colors[i], lw=3.2, label=r'$\lambda = {}$'.format(l)) # legend styling legend = ax.legend() for label in legend.get_texts(): label.set_fontsize('large') for label in legend.get_lines(): label.set_linewidth(1.5) # y-axis ax.set_ylim([-0.01, 2.0]) ax.set_ylabel(r'$f(x)$') ax.set_yticks(np.arange(0,2.1,.2)) # x-axis ax.set_xlim([0.0, 3.0]) ax.set_xlabel(r'$x$') # x-axis tick formatting majorLocator = MultipleLocator(1) majorFormatter = FormatStrFormatter('%d') minorLocator = MultipleLocator(1) ax.xaxis.set_major_locator(majorLocator) ax.xaxis.set_major_formatter(majorFormatter) ax.xaxis.set_minor_locator(minorLocator) ax.grid(color='grey', linestyle='-', linewidth=0.3) plt.suptitle(r'Exponential PDF: $f(x) = \lambda e^{-\lambda x}$ for $x \geq 0$') plt.show() # ### Notation # # $X \sim \operatorname{Expo}(\lambda)$ # # ### Parameters # # $\lambda$ - rate parameter where $\lambda \gt 0$ # # ### Probability density function # # \begin{align} # f(x) &= # \begin{cases} # \lambda e^{-\lambda x}, &\text{ if } x \ge 0 \\ # 0, &\text{ otherwise } # \end{cases} # \end{align} # # # ### Cumulative distribution function # # \begin{align} # F(x) &= \int_{0}^{x} \lambda e^{-\lambda t} \, dt \\ # &= \lambda \int_{0}^{x} e^{-\lambda t} \, dt &\text{ let } u = -\lambda t \text{, } du = -\lambda \, dt \\ # &= \int - e^{u} \, du \\ # &= - e^{u} \\ # &= \left. - e^{-\lambda t} \right|_{0}^{x} \\ # &= \boxed{ 1 - e^{-\lambda x} } # \end{align} # ### Standardized Exponential Distribution # # If we let $Y = \lambda X$, then $Y \sim \operatorname{Expo}(1)$. # # You can compare this with the standardized Normal. # # Proof # # \begin{align} # P(Y \le y) &= P\left(X \le \frac{y}{\lambda} \right) \\ # &= 1 - e^{-\lambda \frac{y}{\lambda}} &\text{ just plugging } \frac{y}{\lambda} \text{ into the CDF above} \\ # &= 1 - e^{-y} &\text{ which is the CDF of } \operatorname{Expo}(1) ~~~~ \blacksquare \\ # \end{align} # # We will next find the mean and variance of $\operatorname{Expo}(1)$, and then derive the general case mean and variance afterwards. # ### Mean and variance of $\operatorname{Expo}(1)$ # # Let $Y \sim \operatorname{Expo}(1)$, find $\mathbb{E}(Y)$ and $\operatorname{Var}(Y)$. # # \begin{align} # \mathbb{E}(Y) &= \int_{0}^{\infty} y\,e^{-y}\,dy & &\text{ let } u = y \text{, } du = dy \\ # & & &\text{ and let } dv = e^{-y}\,dy \text{, } v = -e^{-y} \\ # &= \underbrace{ \left. -y e^{^y} \right\vert_{0}^{\infty}}_{\text{evaluates to }0} + \underbrace{\int_{0}^{\infty} e^{-y}\,dy}_{\text{PDF of }\operatorname{Expo}(1)} \\ # &= \boxed{1} \\ # \\\\ # \operatorname{Var}(Y) &= \mathbb{E}(Y^2) - \mathbb{E}Y ^2\\ # &= \int_{0}^{\infty} y^{2}\,e^{-y}\,dy \,- 1^2 & &\text{ let } u = y^{2} \text{, } du = 2y\,dy \\ # & & &\text{ and let } dv = e^{-y}\,dy \text{, } v = -e^{-y} \\ # &= \left. -y^{2}\,e^{^y} \right\vert_{0}^{\infty} + \int_{0}^{\infty} 2y\,e^{-y}\,dy \,-1 \\ # &= 0 + 2 - 1 \\ # &= \boxed{1} # \end{align} # ### Mean and variance of $\operatorname{Expo}(\lambda)$ # # We can derive the mean and variance of $\operatorname{Expo}(\lambda)$ from that of $\operatorname{Expo}(1)$. # # From $Y = \lambda X$ we have $X = \frac{y}{\lambda}$. # # \begin{align} # \mathbb{E}(X) &= \mathbb{E}\left(\frac{Y}{\lambda}\right) \\ # &= \frac{1}{\lambda} \, \mathbb{E}(Y) \\ # &= \boxed{ \frac{1}{\lambda} } \\ # \\\\ # \operatorname{Var}(X) &= \operatorname{Var}\left(\frac{Y}{\lambda}\right) \\ # &= \frac{1}{\lambda^2} \, \operatorname{Var}(Y) \\ # &= \boxed{ \frac{1}{\lambda^2} } \\ # \end{align} # ### Memorylessness Property # # If you have a random variable representing a wait-time (continuous), the memorylessness property means that no matter how long you have already waited, the probability that you will have to wait an _additional_ time $t$ is the same as if you were starting fresh from 0 (irrespective of the time you already spent waiting). # # Fact: $\operatorname{Expo}(\lambda)$ is the only distribution with the memorylessness property. # # \begin{align} # P(X \ge s+t | X \ge s) &= P(X \ge t) \\ # \end{align} # # The survival function is the random variable that describes how long something might live/exist, in constrast to that for a waiting time. In other words, $P(X \ge s)$ is the probability that some object of interest _lasts longer than_ a continuous time $s$. # # \begin{align} # P(X \ge s) &= 1 - P(X \le s) \\ # &= 1 - (1 - e^{-\lambda s}) \\ # &= e^{-\lambda s} & \quad \text{ the survival function} # \end{align} # # And so using this survival function in an equation using the definition of conditional probability, we have: # # \begin{align} # P(X \ge s+t | X \ge s) &= \frac{P(X \ge s+t \text{, }X \ge s)}{P(X \ge s)} \\ # &= \frac{P(X \ge s+t)}{P(X \ge s)} & \quad \text{ since } P(X \ge s) \text{ is redundant} \\ # &= \frac{e^{-\lambda (s+t)}}{e^{-\lambda s}} & \quad \text{ ratio of survival functions} \\ # &= e^{-\lambda t} \\ # &= P(X \ge t) & \quad \blacksquare # \end{align} # ### Useful corollary of the Memorylessness Property # # This is a brief introduction to conditional expectation, which is just like conditional probability. # # Given $X \sim \operatorname{Expo}(\lambda)$, what is the expected wait-time if we have already waited for some time $a$? # # \begin{align} # \mathbb{E}(X | X \gt a) &= a + \mathbb{E}(X - a|X \gt a) & \quad \text{ by linearity} \\ # &= a + \frac{1}{\lambda} & \quad \text{ by the memorylessness property} # \end{align} # # ---- # View [Lecture 16: Exponential Distribution | Statistics 110](http://bit.ly/2CxRIfh) on YouTube.