using GXBeam, LinearAlgebra import ForwardDiff # for forward-mode automatic differentiation import ReverseDiff # for reverse-mode automatic differentiation using BenchmarkTools # for benchmarking function performance L = 12 # inches h = w = 1 # inches E = 30e6 # lb/in^4 Young's Modulus A = h*w Iyy = w*h^3/12 Izz = w^3*h/12 # create points nelem = 16 x = range(0, L, length=nelem+1) y = zero(x) z = zero(x) points = [[x[i],y[i],z[i]] for i = 1:length(x)] # index of endpoints of each beam element start = 1:nelem stop = 2:nelem+1 # compliance matrix for each beam element compliance = fill(Diagonal([1/(E*A), 0, 0, 0, 1/(E*Iyy), 1/(E*Izz)]), nelem) # create assembly of interconnected nonlinear beams assembly = Assembly(points, start, stop, compliance=compliance) # construct objective function objfun1 = (p) -> begin # non-dimensional tip moment λ = p[1] # dimensionalized tip moment m = pi*E*Iyy/L M = λ*m # prescribed conditions prescribed_conditions = Dict( # fixed left side 1 => PrescribedConditions(ux=0, uy=0, uz=0, theta_x=0, theta_y=0, theta_z=0), # moment on right side nelem+1 => PrescribedConditions(Mz = M) ) # initialize internal storage with the correct type system = StaticSystem(eltype(p), assembly) # perform static analysis system, state, converged = static_analysis!(system, assembly; prescribed_conditions) # return the desired outputs return [state.points[end].u[1], state.points[end].u[2]] end # compute sensitivities using ForwardDiff with λ = 1.0 @btime ForwardDiff.jacobian(objfun1, [1.0]) # compute sensitivities using ReverseDiff with λ = 1.0 @btime ReverseDiff.jacobian(objfun1, [1.0]) # construct pfunc to overwrite prescribed conditions pfunc = (p, t) -> begin # non-dimensional tip moment λ = p[1] # dimensionalized tip moment m = pi*E*Iyy/L M = λ*m # create dictionary of prescribed conditions prescribed_conditions = Dict( # fixed left side 1 => PrescribedConditions(ux=0, uy=0, uz=0, theta_x=0, theta_y=0, theta_z=0), # moment on right side nelem+1 => PrescribedConditions(Mz = M) ) # return named tuple with new arguments return (; prescribed_conditions=prescribed_conditions) end # construct objective function objfun2 = (p) -> begin # perform static analysis system, state, converged = static_analysis(assembly; pfunc, p) # return the desired outputs return [state.points[end].u[1], state.points[end].u[2]] end # compute sensitivities using ForwardDiff with λ = 1.0 @btime ForwardDiff.jacobian(objfun2, [1.0]) # compute sensitivities using ReverseDiff with λ = 1.0 @btime ReverseDiff.jacobian(objfun2, [1.0])