#!/usr/bin/env python # coding: utf-8 # # CasADi live Python3 # Try out CasADi in your browser. # ## Hello World # To run, click in the _code cell_ below, and hit Shift+Enter. You may need to do 'Kernel->Restart' if you paused a while... # In[ ]: from casadi import * x = SX.sym("x") print(jacobian(sin(x),x)) # In[ ]: # # Tutorial examples from [paper.casadi.org](http://paper.casadi.org) # Let us start out by finding the minimum of Rosenbrock's banana-valley function: # # \begin{equation} # \underset{\begin{array}{c}x, y\end{array}}{\text{minimize}} \quad x^2 + 100 \, (y-(1-x)^2)^2 # \label{eq:rosenbrock} # \end{equation} # # By inspection, we can see that its unique solution is $(0,1)$. # The problem can be formulated and solved with CasADi as follows: # # In[ ]: from casadi import * # Symbolic representation x=SX.sym('x') y=SX.sym('y') z=y-(1-x)**2 f=x**2+100*z**2 P=dict(x=vertcat(x,y),f=f) # Create solver instance F=nlpsol('F','ipopt',P) # Solve the problem r=F(x0=[2.5,3.0]) print(r['x']) # Let us reformulate the above as a constrained optimization problem, introducing a decision variable corresponding to `z` above: # # \begin{equation} # \begin{array}{cl} # \underset{\begin{array}{c}x, y, z\end{array}}{\text{minimize}} \quad & x^2 + 100 \, z^2 \\ # \text{subject to} \quad & z+(1-x)^2 - y = 0. # \end{array} # \label{eq:rosenbrock_nlp} # \end{equation} # # The problem can be formulated and solved with CasADi as follows: # In[ ]: from casadi import * # Formulate the NLP x=SX.sym('x') y=SX.sym('y') z=SX.sym('z') f=x**2+100*z**2 g=z+(1-x)**2-y P=dict(x=vertcat(x,y,z),f=f,g=g) # Create solver instance F=nlpsol('F','ipopt',P) # Solve the problem r=F(x0=[2.5,3.0,0.75],ubg=0,lbg=0) print(r['x']) # Since the paper came out, a higher-level abstraction for modeling NLPs was introduced. Here's the above example remodeled: # In[ ]: from casadi import * opti = Opti(); x = opti.variable() y = opti.variable() z = opti.variable() opti.minimize(x**2+100*z**2) opti.subject_to(z+(1-x)**2-y==0) opti.set_initial(x,2.5) opti.set_initial(y,3.0) opti.set_initial(z,0.75) opti.solver('ipopt') sol = opti.solve() print(sol.value(x),sol.value(y)) # We now shift our attention to simulation and sensitivity analysis using # the CasADi's `integrator` objects. # Consider the following initial-value problem in ODE corresponding to a Van der Pol oscillator: # # \begin{align} # \left\{ # \begin{array}{ccll} # \dot{x}_1 &=& (1-x_2^2) \, x_1 - x_2 + p, \quad &x_1(0)=0 \\ # \dot{x}_2 &=& x_1, \quad &x_2(0)=1 # \end{array} # \right. # \label{eq:vdp_dae} # \end{align} # # With $p$ fixed to 0.1, we wish to solve for $x_{\text{f}} := x(1)$. # This can be solved as follows: # In[ ]: from casadi import * # Formulate the ODE x=SX.sym('x',2) p=SX.sym('p') z=1-x[1]**2 f=vertcat(z*x[0]-x[1]+p,x[0]) dae=dict(x=x,p=p,ode=f) # Create solver instance options=dict(t0=0,tf=1) F=integrator('F','cvodes',dae,options) # Solve the problem r=F(x0=[0,1],p=0.1) print(r['xf']) # Create Jacobian function D=F.factory('D',['x0','p'],['jac:xf:x0']) # Solve the problem r=D(x0=[0,1],p=0.1) print(r['jac_xf_x0']) # By combining the nonlinear programing example with the embeddable integrator, we can implement the direct multiple shooting method by Bock and Plitt. We will consider a simple OCP reformulated as a DAE and with $p$ replaced by a time-varying control $u$: # # \begin{align} # \displaystyle \underset{\begin{array}{c}x(\cdot), z(\cdot), u(\cdot)\end{array}} # {\text{minimize}}\quad &\displaystyle \int_{0}^{T}{ \left( x_1(t)^2 + x_2(t)^2 + u(t)^2 \right) \, dt} \\ # \text{subject to} \, \quad # & \left\{ # \begin{array}{l} # \dot{x}_1(t) = z(t) \, x_1(t) - x_2(t) + u(t) \\ # \dot{x}_2(t) = x_1(t) \\ # 0 = x_2(t)^2 + z(t) - 1\\ # -1.0 \le u(t) \le 1.0, \quad x_1(t) \ge -0.25 # \end{array} # \right. \quad t \in [0,T] \\ # & x_1(0)=0, \quad x_2(0)=1 # \label{eq:vdp} # \end{align} # where $x(\cdot) \in \mathbb{R}^2$ is the (differential) state, $z(\cdot) \in \mathbb{R}$ is the algebraic variable and $u(\cdot) \in \mathbb{R}$ is the control. We let $T=10$. # # Our goal is to transcribe the OCP to NLP form. # In the direct approach, the first step in this process is a parameterization of the control trajectory. For simplicity, we assume a uniformly spaced, piecewise constant control trajectory: # $$ # u(t) := u_k \quad \text{for $t \in [t_k, t_{k+1}), \quad k=0, \ldots, N-1$} # \quad \text{with $t_k := k \, T / N$.} # $$ # # With the control fixed over one interval, we can use an integrator to reformulate the problem from continuous time to discrete time. Since we now have a DAE, we introduce an algebraic variable $z$ and the corresponding algebraic equation $g$ and use IDAS instead of CVODES. We also introduce a quadrature for calculating the contributions to the cost function. # In[ ]: from casadi import * # Formulate the DAE x=SX.sym('x',2) z=SX.sym('z') u=SX.sym('u') f=vertcat(z*x[0]-x[1]+u,x[0]) g=x[1]**2+z-1 h=x[0]**2+x[1]**2+u**2 dae=dict(x=x,p=u,ode=f,z=z,alg=g,quad=h) # Create solver instance T = 10. # end time N = 20 # discretization options=dict(t0=0,tf=T/N) F=integrator('F','idas',dae,options) # Empty NLP w=[]; lbw=[]; ubw=[] G=[]; J=0 # Initial conditions Xk=MX.sym('X0',2) w+=[Xk] lbw+=[0,1] ubw+=[0,1] for k in range(1,N+1): # Local control name='U'+str(k-1) Uk=MX.sym(name) w+=[Uk] lbw+=[-1] ubw+=[ 1] # Call integrator Fk=F(x0=Xk,p=Uk) J+=Fk['qf'] # Local state name='X'+str(k) Xk=MX.sym(name,2) w+=[Xk] lbw+=[-.25,-inf] ubw+=[ inf, inf] G+=[Fk['xf']-Xk] # Create NLP solver nlp=dict(f=J,g=vertcat(*G),x=vertcat(*w)) S=nlpsol('S','ipopt',nlp,dict(ipopt=dict(tol=1e-6))) # Solve NLP r=S(lbx=lbw,ubx=ubw,x0=0,lbg=0,ubg=0) print(r['x']) # Again, we note that the same can be achieved using a higher-le}vel abstraction for modeling NLPs: # In[ ]: from casadi import * # Formulate the DAE x=SX.sym('x',2) z=SX.sym('z') u=SX.sym('u') f=vertcat(z*x[0]-x[1]+u,x[0]) g=x[1]**2+z-1 h=x[0]**2+x[1]**2+u**2 dae=dict(x=x,p=u,ode=f,z=z,alg=g,quad=h) # Create solver instance T = 10. # end time N = 20 # discretization options=dict(t0=0,tf=T/N) F=integrator('F','idas',dae,options) opti = Opti() # Build up objective J=0 # Initial conditions Xk = opti.variable(2) opti.subject_to(Xk==vertcat(0,1)) for k in range(1,N+1): # Local control Uk = opti.variable() opti.subject_to(opti.bounded(-1,Uk,1)) # Call integrator Fk=F(x0=Xk,p=Uk) J+=Fk['qf'] # Local state Xk = opti.variable(2) opti.subject_to(Xk[0]>=-0.25) opti.subject_to(Fk['xf']==Xk) opti.minimize(J) # Create NLP solver opti.solver('ipopt',{},dict(tol=1e-6)) # Solve NLP sol = opti.solve() print (sol.value(opti.x)) # In[ ]: