# Harbinger Package # version 1.0.777 source("https://raw.githubusercontent.com/cefet-rj-dal/harbinger/master/jupyter.R") #loading Harbinger load_library("daltoolbox") load_library("harbinger") #loading the example database data(examples_anomalies) #Using the tt time series dataset <- examples_anomalies$tt dataset$event <- factor(dataset$event, labels=c("FALSE", "TRUE")) head(dataset) #ploting the time series plot_ts(x = 1:length(dataset$serie), y = dataset$serie) # data preprocessing slevels <- levels(dataset$event) train <- dataset[1:80,] test <- dataset[-(1:80),] norm <- minmax() norm <- fit(norm, train) train_n <- transform(norm, train) summary(train_n) # establishing class majority method model <- hanc_ml(cla_majority("event", slevels)) # fitting the model model <- fit(model, train_n) detection <- detect(model, train_n) print(detection |> dplyr::filter(event==TRUE)) # evaluating the training evaluation <- evaluate(model, detection$event, as.logical(train_n$event)) print(evaluation$confMatrix) # ploting training results grf <- har_plot(model, train_n$serie, detection, as.logical(train_n$event)) plot(grf) # preparing for testing test_n <- transform(norm, test) # evaluating the detections during testing detection <- detect(model, test_n) print(detection |> dplyr::filter(event==TRUE)) evaluation <- evaluate(model, detection$event, as.logical(test_n$event)) print(evaluation$confMatrix) # ploting the results during testing grf <- har_plot(model, test_n$serie, detection, as.logical(test_n$event)) plot(grf)